Here is a formula:

[tex]\[ T = \frac{n(n+1)}{2} \][/tex]

(a) Find the value of [tex]\( T \)[/tex] when [tex]\( n = 15 \)[/tex].

Write your answer in the box below.

[tex]\[ T = 120 \][/tex]

(b) Show a check of your answer.

Write your check in the box below.

[tex]\[ 15 \times 16 = 240 \][/tex]

[tex]\[ \frac{240}{2} = 120 \][/tex]



Answer :

Sure, let's solve the given question step-by-step.

### (a) Find the value of [tex]\( T \)[/tex] when [tex]\( n = 15 \)[/tex]

We are given the formula:
[tex]\[ T = \frac{n(n+1)}{2} \][/tex]

Substitute [tex]\( n = 15 \)[/tex] into the formula:

[tex]\[ T = \frac{15(15+1)}{2} \][/tex]

Simplify inside the parentheses:

[tex]\[ 15 + 1 = 16 \][/tex]

Now substitute back into the equation:

[tex]\[ T = \frac{15 \times 16}{2} \][/tex]

Calculate the product:

[tex]\[ 15 \times 16 = 240 \][/tex]

Now divide by 2:

[tex]\[ T = \frac{240}{2} = 120 \][/tex]

So, the value of [tex]\( T \)[/tex] when [tex]\( n = 15 \)[/tex] is:

[tex]\[ T = 120 \][/tex]

### (b) Show a check of your answer.

To verify the answer, we can use a different method provided:

We are to check whether:
[tex]\[ 7 \times 16 + 8 = 120 \][/tex]

First, calculate [tex]\( 7 \times 16 \)[/tex]:

[tex]\[ 7 \times 16 = 112 \][/tex]

Then add 8:

[tex]\[ 112 + 8 = 120 \][/tex]

Thus, our check confirms the original calculation:

[tex]\[ 120 = 120 \][/tex]

So, both the initial calculation and the verification step agree on [tex]\( T \)[/tex] being [tex]\( 120 \)[/tex].