Answer :
Sure, let's solve the given question step-by-step.
### (a) Find the value of [tex]\( T \)[/tex] when [tex]\( n = 15 \)[/tex]
We are given the formula:
[tex]\[ T = \frac{n(n+1)}{2} \][/tex]
Substitute [tex]\( n = 15 \)[/tex] into the formula:
[tex]\[ T = \frac{15(15+1)}{2} \][/tex]
Simplify inside the parentheses:
[tex]\[ 15 + 1 = 16 \][/tex]
Now substitute back into the equation:
[tex]\[ T = \frac{15 \times 16}{2} \][/tex]
Calculate the product:
[tex]\[ 15 \times 16 = 240 \][/tex]
Now divide by 2:
[tex]\[ T = \frac{240}{2} = 120 \][/tex]
So, the value of [tex]\( T \)[/tex] when [tex]\( n = 15 \)[/tex] is:
[tex]\[ T = 120 \][/tex]
### (b) Show a check of your answer.
To verify the answer, we can use a different method provided:
We are to check whether:
[tex]\[ 7 \times 16 + 8 = 120 \][/tex]
First, calculate [tex]\( 7 \times 16 \)[/tex]:
[tex]\[ 7 \times 16 = 112 \][/tex]
Then add 8:
[tex]\[ 112 + 8 = 120 \][/tex]
Thus, our check confirms the original calculation:
[tex]\[ 120 = 120 \][/tex]
So, both the initial calculation and the verification step agree on [tex]\( T \)[/tex] being [tex]\( 120 \)[/tex].
### (a) Find the value of [tex]\( T \)[/tex] when [tex]\( n = 15 \)[/tex]
We are given the formula:
[tex]\[ T = \frac{n(n+1)}{2} \][/tex]
Substitute [tex]\( n = 15 \)[/tex] into the formula:
[tex]\[ T = \frac{15(15+1)}{2} \][/tex]
Simplify inside the parentheses:
[tex]\[ 15 + 1 = 16 \][/tex]
Now substitute back into the equation:
[tex]\[ T = \frac{15 \times 16}{2} \][/tex]
Calculate the product:
[tex]\[ 15 \times 16 = 240 \][/tex]
Now divide by 2:
[tex]\[ T = \frac{240}{2} = 120 \][/tex]
So, the value of [tex]\( T \)[/tex] when [tex]\( n = 15 \)[/tex] is:
[tex]\[ T = 120 \][/tex]
### (b) Show a check of your answer.
To verify the answer, we can use a different method provided:
We are to check whether:
[tex]\[ 7 \times 16 + 8 = 120 \][/tex]
First, calculate [tex]\( 7 \times 16 \)[/tex]:
[tex]\[ 7 \times 16 = 112 \][/tex]
Then add 8:
[tex]\[ 112 + 8 = 120 \][/tex]
Thus, our check confirms the original calculation:
[tex]\[ 120 = 120 \][/tex]
So, both the initial calculation and the verification step agree on [tex]\( T \)[/tex] being [tex]\( 120 \)[/tex].