Consider the reaction:

[tex]\[ H_2O(g) + Cl_2O(g) \leftrightarrow 2 HClO(g) \][/tex]

At equilibrium, the concentrations of the different species are as follows:

[tex]\[ \begin{array}{l}
\left[ H_2O \right] = 0.077 \, M \\
\left[ Cl_2O \right] = 0.077 \, M \\
\left[ HClO \right] = 0.023 \, M
\end{array} \][/tex]

What is the equilibrium constant for the reaction at this temperature?

A. 0.089
B. 0.26
C. 3.9
D. 11



Answer :

To determine the equilibrium constant ([tex]\(K_c\)[/tex]) for the given reaction:

[tex]\[ H_2O(g) + Cl_2O(g) \leftrightarrow 2 HClO(g) \][/tex]

we need to use the equilibrium concentrations of the reactants and products. The equilibrium constant expression for this reaction is given by:

[tex]\[ K_c = \frac{{[HClO]^2}}{{[H_2O][Cl_2O]}} \][/tex]

Given the equilibrium concentrations:
[tex]\[ [H_2O] = 0.077\, M \][/tex]
[tex]\[ [Cl_2O] = 0.077\, M \][/tex]
[tex]\[ [HClO] = 0.023\, M \][/tex]

we plug these values into the equilibrium expression:

[tex]\[ K_c = \frac{{(0.023)^2}}{{(0.077) \times (0.077)}} \][/tex]

First, calculate the numerator:

[tex]\[ (0.023)^2 = 0.000529 \][/tex]

Next, calculate the denominator:

[tex]\[ (0.077) \times (0.077) = 0.005929 \][/tex]

Now, divide the numerator by the denominator to find [tex]\(K_c\)[/tex]:

[tex]\[ K_c = \frac{{0.000529}}{{0.005929}} \approx 0.089 \][/tex]

Therefore, the equilibrium constant [tex]\(K_c\)[/tex] for the reaction at this temperature is [tex]\(0.089\)[/tex]. The correct answer from the given options is [tex]\(0.089\)[/tex].