What is the product of the rational expressions shown below? Make sure your answer is in reduced form.

[tex]\[
\frac{x+1}{x-4} \cdot \frac{5x}{x+1}
\][/tex]

A. [tex]\(\frac{5x}{x+1}\)[/tex]
B. [tex]\(\frac{5}{x-4}\)[/tex]
C. [tex]\(\frac{5}{x+1}\)[/tex]
D. [tex]\(\frac{5x}{x-4}\)[/tex]



Answer :

Sure, let's determine the product of the given rational expressions step-by-step and simplify the result.

We have the product of two rational expressions:

[tex]\[ \frac{x+1}{x-4} \cdot \frac{5 x}{x+1} \][/tex]

### Step-by-Step Solution:

1. Write down the given expressions:

[tex]\[ \frac{x+1}{x-4} \cdot \frac{5 x}{x+1} \][/tex]

2. Multiply the numerators together:

The numerators are [tex]\((x + 1)\)[/tex] and [tex]\(5x\)[/tex]. Multiplying these together, we get:

[tex]\[ (x + 1) \cdot 5x = 5x \cdot (x + 1) \][/tex]

3. Multiply the denominators together:

The denominators are [tex]\((x - 4)\)[/tex] and [tex]\((x + 1)\)[/tex]. Multiplying these together, we get:

[tex]\[ (x - 4) \cdot (x + 1) \][/tex]

4. Construct the new fraction with the multiplied numerators and denominators:

[tex]\[ \frac{5x \cdot (x + 1)}{(x - 4) \cdot (x + 1)} \][/tex]

5. Simplify the fraction by canceling common factors in the numerator and the denominator:

The factor [tex]\((x + 1)\)[/tex] is present in both the numerator and the denominator. So we can cancel them out:

[tex]\[ \frac{5x \cdot \cancel{(x + 1)}}{(x - 4) \cdot \cancel{(x + 1)}} = \frac{5x}{x - 4} \][/tex]

6. Write the simplified expression:

[tex]\[ \frac{5x}{x - 4} \][/tex]

### Final Result:
The simplified product of the rational expressions is:

[tex]\[ \boxed{\frac{5 x}{x-4}} \][/tex]

So, the correct choice is [tex]\(\boxed{D}\)[/tex].