Mathematics III Sem 1
5.4.3 Quiz: Multiplying Rational Expressions
Question 7 of 10

Which of the following is the product of the rational expressions shown below?
[tex]\[
\frac{2}{x+1} \cdot \frac{5}{3x}
\][/tex]

A. [tex]\(\frac{10}{3x+3}\)[/tex]
B. [tex]\(\frac{5(x+1)}{6x}\)[/tex]
C. [tex]\(\frac{10}{3x^2+3x}\)[/tex]
D. [tex]\(\frac{5}{x^2+3}\)[/tex]



Answer :

To solve the problem of finding the product of the rational expressions [tex]\(\frac{2}{x+1} \cdot \frac{5}{3x}\)[/tex], we'll follow several steps:

1. Numerator Multiplication:
Multiply the numerators of the given rational expressions:
[tex]\[ \text{Numerator} = 2 \cdot 5 = 10 \][/tex]

2. Denominator Multiplication:
Multiply the denominators of the given rational expressions:
[tex]\[ \text{Denominator} = (x + 1) \cdot (3x) \][/tex]

3. Expand the Denominator:
Distribute [tex]\(3x\)[/tex] into [tex]\((x + 1)\)[/tex]:
[tex]\[ (x + 1) \cdot 3x = 3x \cdot x + 3x \cdot 1 = 3x^2 + 3x \][/tex]

4. Form the Resulting Rational Expression:
Combine the results for the numerator and the denominator:
[tex]\[ \frac{10}{3x^2 + 3x} \][/tex]

Thus, the product of [tex]\(\frac{2}{x+1} \cdot \frac{5}{3x}\)[/tex] is [tex]\(\frac{10}{3x^2 + 3x}\)[/tex].

Therefore, the correct answer is:

C. [tex]\(\frac{10}{3x^2 + 3x}\)[/tex]