Answer :

To solve the definite integral [tex]\(\int_0^2 \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex], we follow these steps:

1. Identify the Form: The integrand [tex]\(\frac{2x + 1}{\sqrt{x^2 + 4}}\)[/tex] suggests that we may need to use substitution to simplify the expression.

2. Substitution: Consider the substitution [tex]\(u = x^2 + 4\)[/tex]. Then, [tex]\(du = 2x \, dx\)[/tex]. This transforms parts of the integrand accordingly.

3. Rewriting Integral: When [tex]\(x = 0\)[/tex], [tex]\(u = 4\)[/tex]. When [tex]\(x = 2\)[/tex], [tex]\(u = 8\)[/tex].
[tex]\[ \int_{4}^{8} \frac{2x}{\sqrt{u}} \frac{du}{2x} + \int_{4}^{8} \frac{1}{\sqrt{u}} du \][/tex]
Simplifying within the integral context, it separates as:
[tex]\[ \int_{4}^{8} \frac{1}{\sqrt{u}} du + \int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} dx \][/tex]

4. Solving Each Integral:

- First integral: [tex]\(\int_{4}^{8} \frac{1}{\sqrt{u}} \, du\)[/tex]
[tex]\[ \int_{4}^{8} u^{-1/2} \, du = 2 u^{1/2} \Big|_{4}^{8} \][/tex]
Calculating this result:
[tex]\[ = 2\sqrt{8} - 2\sqrt{4} = 4\sqrt{2} - 4 \][/tex]

- Second integral: [tex]\(\int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx\)[/tex]
For this, set [tex]\(u = x^2 + 4\)[/tex] and then:
[tex]\[ = \int_{4}^{8} u^{-1/2} \cdot \frac{du}{2x} + \int_{0}^{2} \frac{1}{\sqrt{x^2+4}} dx = \log(1 + \sqrt{2}) \][/tex]

5. Combining Results: The results from both solved integrals sum up:

[tex]\[ \int_4^8 \frac{1}{\sqrt{u}} \, du + \int_{0}^{2} \frac{1}{\sqrt{x^2+4}}dx = -4 + log(1 + \sqrt(2)) + 4\sqrt{2} \][/tex]

Thus, the value of the definite integral [tex]\(\int_0^2 \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex] is [tex]\[-4 + \log(1 + \sqrt{2}) + 4\sqrt{2}\][/tex].