To simplify the expression [tex]\(\left(10^{-2}\right)^4\)[/tex], we can use the power of a power property in exponents. This property states that [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].
Let's apply this property to our expression:
[tex]\[
(10^{-2})^4 = 10^{(-2) \cdot 4}
\][/tex]
Now, perform the multiplication in the exponent:
[tex]\[
(-2) \cdot 4 = -8
\][/tex]
Thus, the expression simplifies to:
[tex]\[
10^{-8}
\][/tex]
So, the answer is:
[tex]\[
10^{-8}
\][/tex]