To find the value of [tex]\(2a + 3b\)[/tex] when [tex]\(a = 2\)[/tex] and [tex]\(b = 3\)[/tex], follow these steps:
1. Substitute the given values:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = 3\)[/tex]
2. Plug these values into the expression [tex]\(2a + 3b\)[/tex]:
[tex]\[
2a + 3b
\][/tex]
3. Replace [tex]\(a\)[/tex] with 2 and [tex]\(b\)[/tex] with 3 in the expression:
[tex]\[
2 \times 2 + 3 \times 3
\][/tex]
4. Calculate each part of the expression separately:
- [tex]\(2 \times 2 = 4\)[/tex]
- [tex]\(3 \times 3 = 9\)[/tex]
5. Add the results together:
[tex]\[
4 + 9 = 13
\][/tex]
Therefore, the value of [tex]\(2a + 3b\)[/tex] is [tex]\(13\)[/tex].
The correct answer is:
C) 13