Answer :

To find the value of [tex]\(2a + 3b\)[/tex] when [tex]\(a = 2\)[/tex] and [tex]\(b = 3\)[/tex], follow these steps:

1. Substitute the given values:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = 3\)[/tex]

2. Plug these values into the expression [tex]\(2a + 3b\)[/tex]:
[tex]\[ 2a + 3b \][/tex]

3. Replace [tex]\(a\)[/tex] with 2 and [tex]\(b\)[/tex] with 3 in the expression:
[tex]\[ 2 \times 2 + 3 \times 3 \][/tex]

4. Calculate each part of the expression separately:
- [tex]\(2 \times 2 = 4\)[/tex]
- [tex]\(3 \times 3 = 9\)[/tex]

5. Add the results together:
[tex]\[ 4 + 9 = 13 \][/tex]

Therefore, the value of [tex]\(2a + 3b\)[/tex] is [tex]\(13\)[/tex].

The correct answer is:
C) 13