Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]\[
\frac{2}{4} + \frac{3}{6} + \left[\frac{4}{2} + \left\{\frac{2}{4} - \left(\frac{3}{4} + \frac{2}{4}\right)\right\}\right]
\][/tex]
-----

Response:
[tex]\[
\frac{2}{4} + \frac{3}{6} + \left[\frac{4}{2} + \left\{\frac{2}{4} - \left(\frac{3}{4} + \frac{2}{4}\right)\right\}\right]
\][/tex]



Answer :

Sure, let's solve the given mathematical expression step-by-step. The expression is:

[tex]\[ \frac{2}{4}+\frac{3}{6}+\left[\frac{4}{2}+\left\{\frac{2}{4}-\left(\frac{3}{4}+\frac{2}{4}\right)\right\}\right] \][/tex]

Let's break it down and solve it step by step:

1. Calculate individual fractions:
[tex]\[ \frac{2}{4} = 0.5 \][/tex]
[tex]\[ \frac{3}{6} = 0.5 \][/tex]
[tex]\[ \frac{4}{2} = 2.0 \][/tex]
[tex]\[ \frac{2}{4} = 0.5 \][/tex]
[tex]\[ \frac{3}{4} = 0.75 \][/tex]
[tex]\[ \frac{2}{4} = 0.5 \][/tex]

2. Calculate the innermost parentheses:
[tex]\[ \left(\frac{3}{4} + \frac{2}{4}\right) = 0.75 + 0.5 = 1.25 \][/tex]

3. Now, calculate the expression inside the curly brackets:
[tex]\[ \frac{2}{4} - 1.25 = 0.5 - 1.25 = -0.75 \][/tex]

4. Next, calculate the expression inside the square brackets:
[tex]\[ \frac{4}{2} + (-0.75) = 2.0 - 0.75 = 1.25 \][/tex]

5. Finally, sum all the results:
[tex]\[ \frac{2}{4} + \frac{3}{6} + \left(1.25\right) = 0.5 + 0.5 + 1.25 = 2.25 \][/tex]

So, the step-by-step solution for the expression [tex]\(\frac{2}{4}+\frac{3}{6}+\left[\frac{4}{2}+\left\{\frac{2}{4}-\left(\frac{3}{4}+\frac{2}{4}\right)\right\}\right]\)[/tex] is [tex]\(2.25\)[/tex].