Drag the numbers to the correct locations on the image. Not all numbers will be used.

Complete the synthetic division to find the quotient of [tex]$3x^3 - 25x^2 + 12x - 32$[/tex] and [tex]$x - 8$[/tex].

32, 24, 0, 8, 4, -8

[tex]\[
\begin{array}{cccc}
\hline
3 & -25 & 12 & -32 \\
\downarrow & & -8 & \\
\hline
3 & -1 & & \\
\end{array}
\][/tex]



Answer :

To find the quotient of [tex]\( 3x^3 - 25x^2 + 12x - 32 \)[/tex] divided by [tex]\( x - 8 \)[/tex] using synthetic division, we will follow these steps:

1. Write down the coefficients of the polynomial [tex]\( 3x^3 - 25x^2 + 12x - 32 \)[/tex]:
[tex]\[ 3, -25, 12, -32 \][/tex]

2. Identify the root of the divisor [tex]\( x - 8 \)[/tex], which is [tex]\( 8 \)[/tex].

3. Perform synthetic division:

- Write the root [tex]\( 8 \)[/tex] to the left, and the coefficients to the right:
[tex]\[ 8 \quad | \quad 3 \quad -25 \quad 12 \quad -32 \][/tex]

- Bring down the leading coefficient [tex]\( 3 \)[/tex]:
[tex]\[ 8 \quad | \quad 3 \quad -25 \quad 12 \quad -32 \\ \quad \quad \quad \quad 3 \][/tex]

- Multiply [tex]\( 3 \)[/tex] (the value just brought down) by the root [tex]\( 8 \)[/tex], and write the result below the next coefficient [tex]\(-25\)[/tex]:
[tex]\[ 8 \quad | \quad 3 \quad -25 \quad 12 \quad -32 \\ \quad \quad \quad \quad 3 \\ \quad \quad \quad \quad \downarrow \quad \quad 24 \][/tex]

- Add [tex]\( -25 \)[/tex] and [tex]\( 24 \)[/tex] (the sum is [tex]\(-1\)[/tex]), and write it below:
[tex]\[ 8 \quad | \quad 3 \quad -25 \quad 12 \quad -32 \\ \quad \quad \quad \quad 3 \quad -1 \\ \quad \quad \quad \quad \downarrow \quad 24 \quad \quad \downarrow \][/tex]

- Multiply [tex]\(-1\)[/tex] (the value just written down) by the root [tex]\( 8 \)[/tex], and write the result below the next coefficient [tex]\( 12 \)[/tex]:
[tex]\[ 8 \quad | \quad 3 \quad -25 \quad 12 \quad -32 \\ \quad \quad \quad \quad 3 \quad -1 \\ \quad \quad \quad \quad \downarrow \quad 24 \quad \quad \downarrow \quad -8 \][/tex]

- Add [tex]\( 12 \)[/tex] and [tex]\(-8\)[/tex] (the sum is [tex]\( 4 \)[/tex]), and write it below:
[tex]\[ 8 \quad | \quad 3 \quad -25 \quad 12 \quad -32 \\ \quad \quad \quad \quad 3 \quad -1 \quad 4 \\ \quad \quad \quad \quad \downarrow \quad 24 \quad \quad \downarrow \quad -8 \quad \quad \downarrow \][/tex]

- Multiply [tex]\( 4 \)[/tex] (the value just written down) by the root [tex]\( 8 \)[/tex], and write the result below the next coefficient [tex]\(-32\)[/tex]:
[tex]\[ 8 \quad | \quad 3 \quad -25 \quad 12 \quad -32 \\ \quad \quad \quad \quad 3 \quad -1 \quad 4 \\ \quad \quad \quad \quad \downarrow \quad 24 \quad \quad \downarrow \quad -8 \quad \quad \downarrow \quad 32 \][/tex]

- Add [tex]\(-32\)[/tex] and [tex]\( 32 \)[/tex] (the sum is [tex]\( 0 \)[/tex]), and write it below as the remainder:
[tex]\[ 8 \quad | \quad 3 \quad -25 \quad 12 \quad -32 \\ \quad \quad \quad \quad 3 \quad -1 \quad 4 \quad 0 \\ \quad \quad \quad \quad \downarrow \quad 24 \quad \quad \downarrow \quad -8 \quad \downarrow \quad 32 \][/tex]

So, the quotient is [tex]\( 3x^2 - x + 4 \)[/tex] and the remainder is [tex]\( 0 \)[/tex].