Square the binomial: [tex](4x - 3)^2[/tex].

The coefficient of the [tex]x[/tex] term in your result is: [tex]$\quad$[/tex] (Include the correct sign in your answer.)

The solution is: [tex]$\quad$[/tex]



Answer :

To square the given binomial [tex]\((4x - 3)^2\)[/tex], let's go through the steps carefully:

1. Express the binomial squared:
[tex]\[ (4x - 3)^2 \][/tex]

2. Use the formula for squaring a binomial:
[tex]\[ (a - b)^2 = a^2 - 2ab + b^2 \][/tex]
Here, [tex]\(a = 4x\)[/tex] and [tex]\(b = 3\)[/tex].

3. Apply the formula to our binomial:
[tex]\[ (4x - 3)^2 = (4x)^2 - 2 \cdot (4x) \cdot (3) + (3)^2 \][/tex]

4. Calculate each part separately:
- [tex]\((4x)^2 = 16x^2\)[/tex]
- [tex]\(-2 \cdot (4x) \cdot (3) = -24x\)[/tex]
- [tex]\((3)^2 = 9\)[/tex]

5. Combine all parts together:
[tex]\[ (4x - 3)^2 = 16x^2 - 24x + 9 \][/tex]

So, after expanding [tex]\((4x - 3)^2\)[/tex], we get:
[tex]\[ 16x^2 - 24x + 9 \][/tex]

The coefficient of the [tex]\(x\)[/tex] term in this expanded expression is [tex]\(-24\)[/tex].

Therefore, the coefficient of the [tex]\(x\)[/tex] term in the result is:
[tex]\[ -24 \][/tex]

The complete solution, written as required, is:
[tex]\[ (16x^2 - 24x + 9) \][/tex]

To summarize, the coefficient of the [tex]\(x\)[/tex] term in the result is [tex]\(-24\)[/tex]