Choose the correct simplification of [tex]\frac{f^9 h^{23}}{f^3 h^{17}}[/tex].

A. [tex]f^{12} h^6[/tex]

B. [tex]\frac{1}{f^{12} h^6}[/tex]

C. [tex]f^6 h^6[/tex]

D. [tex]\frac{1}{f^6 h^6}[/tex]



Answer :

Certainly! Let's simplify the expression [tex]\(\frac{f^9 h^{23}}{f^3 h^{17}}\)[/tex] step-by-step in a clear and methodical manner.

1. Identify the original expression:
[tex]\[ \frac{f^9 h^{23}}{f^3 h^{17}} \][/tex]

2. Simplify the [tex]\(f\)[/tex]-terms:
[tex]\[ \frac{f^9}{f^3} = f^{9-3} = f^6 \][/tex]
Explanation: When dividing powers with the same base, subtract the exponents.

3. Simplify the [tex]\(h\)[/tex]-terms:
[tex]\[ \frac{h^{23}}{h^{17}} = h^{23-17} = h^6 \][/tex]
Explanation: Similar to the [tex]\(f\)[/tex]-terms, subtract the exponents for [tex]\(h\)[/tex]-terms as well.

4. Combine the simplified [tex]\(f\)[/tex]-terms and [tex]\(h\)[/tex]-terms:
[tex]\[ f^6 h^6 \][/tex]

Thus, the correct simplification of the expression [tex]\(\frac{f^9 h^{23}}{f^3 h^{17}}\)[/tex] is:
[tex]\[ f^6 h^6 \][/tex]

Among the given options, the correct choice is:
[tex]\[ \boxed{f^6 h^6} \][/tex]