Simplify [tex]\left(4 x^3 y^3\right)\left(2 x^2 y\right)[/tex]

A. [tex]6 x^5 y^4[/tex]
B. [tex]8 x^5 y^3[/tex]
C. [tex]8 x^6 y^3[/tex]
D. [tex]8 x^5 y^4[/tex]



Answer :

To simplify the expression [tex]\(\left( 4 x^3 y^3 \right) \left( 2 x^2 y \right)\)[/tex], let's break it down step-by-step:

1. Multiply the constants:

The constants in the expression are 4 and 2. Multiplying these gives:
[tex]\[ 4 \cdot 2 = 8 \][/tex]

2. Multiply the [tex]\(x\)[/tex] terms:

The [tex]\(x\)[/tex] terms are [tex]\(x^3\)[/tex] and [tex]\(x^2\)[/tex]. When multiplying exponents with the same base, you add the exponents:
[tex]\[ x^3 \cdot x^2 = x^{3+2} = x^5 \][/tex]

3. Multiply the [tex]\(y\)[/tex] terms:

The [tex]\(y\)[/tex] terms are [tex]\(y^3\)[/tex] and [tex]\(y\)[/tex]. Similarly, when multiplying exponents with the same base, you add the exponents:
[tex]\[ y^3 \cdot y = y^{3+1} = y^4 \][/tex]

Putting it all together, we get:
[tex]\[ (4 x^3 y^3) (2 x^2 y) = 8 x^5 y^4 \][/tex]

Thus, the simplified expression is:
[tex]\[ 8 x^5 y^4 \][/tex]

The correct answer is [tex]\(\boxed{8 x^5 y^4}\)[/tex].