Given [tex]\( f(x) \)[/tex], evaluate [tex]\( f(3) \)[/tex].

[tex]\[
\begin{array}{c}
f(x)=\frac{12x^2 - 3x + 20}{3} \\
f(3) = \frac{\text{[?]}}{\square}
\end{array}
\][/tex]



Answer :

Sure, let's evaluate [tex]\( f(3) \)[/tex] for the given function [tex]\( f(x) = \frac{12x^2 - 3x + 20}{3} \)[/tex].

1. Substitute [tex]\( x = 3 \)[/tex] into the function:
[tex]\[ f(3) = \frac{12(3)^2 - 3(3) + 20}{3} \][/tex]

2. Calculate the value of [tex]\( 12(3)^2 \)[/tex]:
[tex]\[ 12 \cdot (3)^2 = 12 \cdot 9 = 108 \][/tex]

3. Calculate the value of [tex]\( -3(3) \)[/tex]:
[tex]\[ -3 \cdot 3 = -9 \][/tex]

4. Add these results along with 20:
[tex]\[ 108 - 9 + 20 = 119 \][/tex]

5. Divide the sum by 3:
[tex]\[ f(3) = \frac{119}{3} \][/tex]

So, the final result of evaluating [tex]\( f(3) \)[/tex] is:
[tex]\[ f(3) = 39.666666666666664 \][/tex]

Therefore, [tex]\( f(3) \)[/tex] evaluates to approximately [tex]\( 39.67 \)[/tex] when rounded to two decimal places.