A bill is brought to a group of politicians—Democrats and Republicans. Researchers recorded the expected values and then polled the group on whether they would vote "in favor," "opposed," or "indifferent." These values are recorded in the contingency table below. Which of the following tables correctly shows the expected values for the chi-square independence test?

[tex]\[
\begin{tabular}{|c|c|c|c|c|}
\hline & In favor & Indifferent & Opposed & Row Total \\
\hline Republicans & 10 & 21 & 11 & 42 \\
\hline Democrats & 8 & 11 & 22 & 41 \\
\hline Column Total & 18 & 32 & 33 & 83 \\
\hline
\end{tabular}
\][/tex]

Select the correct answer below:

[tex]\[
\begin{tabular}{|c|c|c|c|c|}
\hline & In favor & Indifferent & Opposed & Row Total \\
\hline Republicans & 10 & 21 & 11 & 42 \\
\hline Democrats & $7.1$ & $17.2$ & $14.7$ & 41 \\
\hline Column Total & 18 & 32 & 33 & 83 \\
\hline
\end{tabular}
\][/tex]

[tex]\[
\begin{tabular}{|c|c|c|c|c|}
\hline Republicans & In favor & Indifferent & Opposed & Row Total \\
\hline $8.1$ & $17.2$ & $17.8$ & 42 \\
\hline
\end{tabular}
\][/tex]



Answer :

To determine the expected values for the chi-square test of independence, we utilize the formula for expected counts in a contingency table:

[tex]\[ E_{ij} = \frac{( \text{Row Total}_i \times \text{Column Total}_j )}{\text{Grand Total}} \][/tex]

Now, we'll calculate the expected counts for each cell in our table:
- Total group size (Grand Total): 83
- Republican Total: 42
- Democrat Total: 41
- Total in favor: 18
- Total indifferent: 32
- Total opposed: 33

### Republicans:
1. In favor:
[tex]\[ \text{Expected value} = \frac{(42 \times 18)}{83} = 9.108433734939759 \][/tex]

2. Indifferent:
[tex]\[ \text{Expected value} = \frac{(42 \times 32)}{83} = 16.19277108433735 \][/tex]

3. Opposed:
[tex]\[ \text{Expected value} = \frac{(42 \times 33)}{83} = 16.698795180722893 \][/tex]

### Democrats:
1. In favor:
[tex]\[ \text{Expected value} = \frac{(41 \times 18)}{83} = 8.891566265060241 \][/tex]

2. Indifferent:
[tex]\[ \text{Expected value} = \frac{(41 \times 32)}{83} = 15.80722891566265 \][/tex]

3. Opposed:
[tex]\[ \text{Expected value} = \frac{(41 \times 33)}{83} = 16.301204819277107 \][/tex]

Therefore, the table containing the expected values is:

[tex]\[ \begin{array}{|c|c|c|c|c|} \hline & \text{In favor} & \text{Indifferent} & \text{Opposed} & \text{Row Total} \\ \hline \text{Republicans} & 9.108 & 16.193 & 16.699 & 42 \\ \hline \text{Democrats} & 8.892 & 15.807 & 16.301 & 41 \\ \hline \text{Column Total} & 18 & 32 & 33 & 83 \\ \hline \end{array} \][/tex]

This matches the calculated expected values perfectly. None of the stored options seem to be a perfect numerical match for our calculation, so please verify if there's an error in the options themselves. But based on our complete and accurate calculation, the correct values to present are:

- Republicans: In favor: 9.108 | Indifferent: 16.193 | Opposed: 16.699
- Democrats: In favor: 8.892 | Indifferent: 15.807 | Opposed: 16.301