A sphere has a radius of 5 inches. What is its volume?

The formula for the volume of a sphere is:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]

1. Substitute the radius into the formula:
[tex]\[
\begin{array}{l}
V = \frac{4}{3} \pi (5^3) \\
V = \frac{4}{3} \pi (125)
\end{array}
\][/tex]

2. Evaluate the power:
[tex]\[ 5^3 = 125 \][/tex]

3. Simplify:
[tex]\[ V = \frac{500}{3} \pi \, \text{in}^3 \][/tex]



Answer :

Sure, let's go through the process step by step to find the volume of a sphere with a radius of 5 inches.

We are given the formula for the volume [tex]\( V \)[/tex] of a sphere:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]

1. Substitute the given radius into the formula:
[tex]\[ V = \frac{4}{3} \pi (5^3) \][/tex]
[tex]\[ V = \frac{4}{3} \pi (125) \][/tex]

2. Evaluate the power:
Since [tex]\( 5^3 = 5 \times 5 \times 5 = 125 \)[/tex], we then have:
[tex]\[ V = \frac{4}{3} \pi (125) \][/tex]

3. Simplify:
To continue simplifying:
[tex]\[ V = \frac{4}{3} \pi \times 125 \][/tex]
[tex]\[ V = \frac{500}{3} \pi \][/tex]
So the volume is:
[tex]\[ V \approx 523.5987755982989 \, \text{in}^3 \][/tex]

Therefore, the volume of a sphere with a radius of 5 inches is approximately [tex]\( 523.5987755982989 \)[/tex] cubic inches.