Answered

Two masses are 83.0 m apart. Mass 1 is 4.32 kg and mass 2 is 163 kg. What is the gravitational force between the two masses?

[tex]\[
\vec{F} = G \frac{m_1 m_2}{r^2}
\][/tex]
where
[tex]\[
G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2
\][/tex]

[tex]\[
\vec{F} = [?] \times 10^{[?]} \, \text{N}
\][/tex]



Answer :

To determine the gravitational force between two masses, you can use Newton's law of universal gravitation, which is formulated as follows:

[tex]\[ \vec{F} = G \frac{m_1 m_2}{r^2} \][/tex]

Given:
- [tex]\( G \)[/tex] (Gravitational constant) = [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 \)[/tex] (Mass 1) = [tex]\( 4.32 \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] (Mass 2) = [tex]\( 163 \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] (Distance between the masses) = [tex]\( 83.0 \, \text{m} \)[/tex]

Step-by-step solution:

1. Identify the masses and the separation distance:

[tex]\[ m_1 = 4.32 \, \text{kg} \][/tex]
[tex]\[ m_2 = 163 \, \text{kg} \][/tex]
[tex]\[ r = 83.0 \, \text{m} \][/tex]

2. Substitute the values into the formula for the gravitational force:

[tex]\[ \vec{F} = 6.67 \times 10^{-11} \cdot \frac{4.32 \times 163}{83.0^2} \][/tex]

3. Calculate the gravitational force:

- First, calculate the product of the masses:

[tex]\[ m_1 \times m_2 = 4.32 \times 163 = 704.16 \, \text{kg}^2 \][/tex]

- Next, calculate the square of the distance:

[tex]\[ r^2 = 83.0^2 = 6889.0 \, \text{m}^2 \][/tex]

- Now, substitute these intermediate results back into the formula:

[tex]\[ \vec{F} = 6.67 \times 10^{-11} \, \text{N m}^2/\text{kg}^2 \cdot \frac{704.16 \, \text{kg}^2}{6889.0 \, \text{m}^2} \][/tex]

- Simplify the division inside the parentheses:

[tex]\[ \frac{704.16}{6889.0} \approx 0.1022 \][/tex]

- Finally, multiply by the gravitational constant:

[tex]\[ 6.67 \times 10^{-11} \cdot 0.1022 \approx 6.82 \times 10^{-12} \, \text{N} \][/tex]

Thus, the gravitational force between the two masses is approximately:

[tex]\[ \vec{F} \approx 6.82 \times 10^{-12} \, \text{N} \][/tex]