The slope of a line that passes through points [tex]\((-1, -3)\)[/tex] and [tex]\((-2, 5)\)[/tex] is:

A. None of these choices are correct.
B. [tex]\(m = 8\)[/tex]
C. [tex]\(m = -8\)[/tex]
D. [tex]\(m = -4\)[/tex]
E. [tex]\(m = 4\)[/tex]



Answer :

To determine the slope ([tex]\(m\)[/tex]) of the line that passes through the points [tex]\((-1, -3)\)[/tex] and [tex]\((-2, 5)\)[/tex], you can use the slope formula:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here the coordinates of the points are:
- [tex]\((x_1, y_1) = (-1, -3)\)[/tex]
- [tex]\((x_2, y_2) = (-2, 5)\)[/tex]

Substitute the coordinates into the slope formula:

[tex]\[ m = \frac{5 - (-3)}{-2 - (-1)} \][/tex]

Simplify the numerator and the denominator:

[tex]\[ m = \frac{5 + 3}{-2 + 1} \][/tex]
[tex]\[ m = \frac{8}{-1} \][/tex]

Thus, the slope [tex]\(m\)[/tex] is:

[tex]\[ m = -8 \][/tex]

Looking at the choices given:

- None of these choices are correct.
- [tex]\(m = 8\)[/tex].
- [tex]\(m = -8\)[/tex].
- [tex]\(m = -4\)[/tex].
- [tex]\(m = 4\)[/tex].

The correct choice is:

[tex]\[ m = -8 \][/tex]