Type the correct answer in the box. Use numerals instead of words.

This system of equations has been placed in a matrix:
[tex]$
\begin{array}{l}
y = 700x + 200 \\
y = 5,000 - 75x
\end{array}
$[/tex]

Complete the matrix by filling in the missing numbers.
\begin{tabular}{|r|c|c|c|c|c|l|l|}
\hline
& & Column 1 & & Column 2 & & Column 3 & \\
\hline
\hline
& & & & & \\
\hline
\hline
Row 1 & & 700 & & -1 & & 200 \\
\hline
\hline
Row 2 & & 75 & & -1 & & 5000 \\
\hline
\end{tabular}



Answer :

To complete the matrix based on the given system of equations:

[tex]\[ \begin{array}{l} y = 700x + 200 \\ y = 5000 - 75x \end{array} \][/tex]

Here are the steps to transform this system of equations into the matrix form [tex]\( Ax = B \)[/tex]:

1. Align the coefficients of [tex]\( x \)[/tex] and constants from each equation.

The matrix will have the following structure:

[tex]\[ \begin{tabular}{|r|c|c|c|c|c|l|l|} \hline & & Column 1 & & Column 2 & & Column 3 & \\ \hline \hline & & & & & & & \\ \hline \hline Row 1 & & 700 & & -1 & & 200 & \\ \hline \hline Row 2 & & 75 & & 1 & & 5000 & \\ \hline \end{tabular} \][/tex]

So, the completed matrix is:

[tex]\[ \begin{tabular}{|r|c|c|c|c|c|l|l|} \hline & & Column 1 & & Column 2 & & Column 3 & \\ \hline \hline & & & & & \\ \hline \hline Row 1 & & 700 & & -1 & & 200 \\ \hline \hline Row 2 & & 75 & & 1 & & 5000 \\ \hline \end{tabular} \][/tex]