1. If [tex]7 \ \textless \ em\ \textgreater \ 3 = 20[/tex] and [tex]5 \ \textless \ /em\ \textgreater \ 6 = 22[/tex], work out the value of the following:

a) [tex]8 \ \textless \ em\ \textgreater \ 4[/tex]

b) [tex]4 \ \textless \ /em\ \textgreater \ 7[/tex]

c) [tex]25 \ \textless \ em\ \textgreater \ 100[/tex]

d) [tex]23 \ \textless \ /em\ \textgreater \ 5[/tex]

e) [tex]25 \ \textless \ em\ \textgreater \ 7[/tex]

f) [tex]125 \ \textless \ /em\ \textgreater \ 150[/tex]

g) [tex]75 \ \textless \ em\ \textgreater \ 300[/tex]

h) [tex]400 \ \textless \ /em\ \textgreater \ 500[/tex]



Answer :

Certainly! Let's work through each of the provided questions step-by-step using the given multiplication pattern:

Given:
1. [tex]\( 7 3 = 20 \)[/tex]
2. [tex]\( 5
6 = 22 \)[/tex]

Notice the pattern from the provided examples and apply it to the following cases.

a) [tex]\( 8 4 \)[/tex]:

Start by applying the same pattern to [tex]\( 8
4 \)[/tex]. Using this approach, we find:
[tex]\[ 8 4 = 22 \][/tex]

b) [tex]\( 4
7 \)[/tex]:

For [tex]\( 4 7 \)[/tex], using the pattern:
[tex]\[ 4
7 = 21 \][/tex]

c) [tex]\( 25 100 \)[/tex]:

For [tex]\( 25
100 \)[/tex], following the rule, we get:
[tex]\[ 25 100 = 135 \][/tex]

d) [tex]\( 23
5 \)[/tex]:

Using the same idea for [tex]\( 23 5 \)[/tex], we can derive:
[tex]\[ 23
5 = 38 \][/tex]

e) [tex]\( 25 7 \)[/tex]:

Continuing with [tex]\( 25
7 \)[/tex]:
[tex]\[ 25 7 = 42 \][/tex]

f) [tex]\( 125
150 \)[/tex]:

For [tex]\( 125 150 \)[/tex], we determine:
[tex]\[ 125
150 = 285 \][/tex]

g) [tex]\( 75 300 \)[/tex]:

Applying the pattern to [tex]\( 75
300 \)[/tex]:
[tex]\[ 75 300 = 385 \][/tex]

h) [tex]\( 400
500 \)[/tex]:

Lastly, for [tex]\( 400 500 \)[/tex]:
[tex]\[ 400
500 = 910 \][/tex]

So the results are as follows:
[tex]\[ a) 8 4 = 22 \][/tex]
[tex]\[ b) 4
7 = 21 \][/tex]
[tex]\[ f) 25 100 = 135 \][/tex]
[tex]\[ c) 23
5 = 38 \][/tex]
[tex]\[ d) 25 7 = 42 \][/tex]
[tex]\[ g) 125
150 = 285 \][/tex]
[tex]\[ h) 75 300 = 385 \][/tex]
[tex]\[ i) 400
500 = 910 \][/tex]