To solve this problem, we will use Ohm's Law, which states that the voltage [tex]\( \Delta V \)[/tex] across a resistor is the product of the current [tex]\( I \)[/tex] flowing through the resistor and the resistance [tex]\( R \)[/tex] of the resistor. The formula is given by:
[tex]\[
\Delta V = I \cdot R
\][/tex]
Here, the given values are:
- Current ([tex]\( I \)[/tex]) = 0.64 A
- Resistance ([tex]\( R \)[/tex]) = 240 Ω
We can substitute these values into the formula to find the voltage:
[tex]\[
\Delta V = 0.64 \, \text{A} \times 240 \, \Omega
\][/tex]
Performing the multiplication, we get:
[tex]\[
\Delta V = 153.6 \, \text{V}
\][/tex]
Therefore, the voltage required to run 0.64 A of current through a 240 Ω resistor is [tex]\( 153.6 \, \text{V} \)[/tex].
Among the given choices, the correct option is:
B. [tex]\( 1.5 \times 10^2 \, \text{V} \)[/tex]
This notation is scientifically approximate, where [tex]\( 1.5 \times 10^2 \, \text{V} \)[/tex] equals 150 V, and the closest numerical value to our exact calculation of 153.6 V.