A block is pulled by two horizontal forces. The first force is 115 N at an angle of [tex]\theta_1[/tex], and the second is 213 N at an angle of 29 degrees.

What is the [tex]y[/tex]-component of the total force acting on the block?

[tex]\overrightarrow{F_y} = [?] \, \text{N}[/tex]



Answer :

To determine the [tex]$y$[/tex]-component of the total force acting on the block, we will decomposes the forces into their [tex]$y$[/tex]-components using trigonometric functions.

1. Understanding the problem:
- We have two forces:
- The first force [tex]\( F_1 = 115 \)[/tex] N at an angle [tex]\( \theta_1 = 34^\circ \)[/tex] from the horizontal.
- The second force [tex]\( F_2 = 213 \)[/tex] N at an angle [tex]\( \theta_2 = 29^\circ \)[/tex] from the horizontal.
- We need to find the resultant [tex]$y$[/tex]-component of these forces.

2. Identify the [tex]$y$[/tex]-component of each force:
- The [tex]$y$[/tex]-component of a force can be found using the sine of the angle because it gives the opposite side of the angle in a right triangle.

3. Calculate the [tex]$y$[/tex]-components:
- For the first force [tex]\( F_1 \)[/tex]:
[tex]\[ F_{1y} = F_1 \times \sin(\theta_1) \][/tex]
Substituting the given values:
[tex]\[ F_{1y} = 115 \times \sin(34^\circ) \][/tex]
This equals approximately [tex]\( 64.307 \)[/tex] N.

- For the second force [tex]\( F_2 \)[/tex]:
[tex]\[ F_{2y} = F_2 \times \sin(\theta_2) \][/tex]
Substituting the given values:
[tex]\[ F_{2y} = 213 \times \sin(29^\circ) \][/tex]
This equals approximately [tex]\( 103.264 \)[/tex] N.

4. Calculate the total [tex]$y$[/tex]-component:
- The total [tex]$y$[/tex]-component is the sum of the individual [tex]$y$[/tex]-components:
[tex]\[ F_y = F_{1y} + F_{2y} \][/tex]
Substituting the calculated components:
[tex]\[ F_y = 64.307 + 103.264 \][/tex]
This equals approximately [tex]\( 167.572 \)[/tex] N.

Therefore, the [tex]$y$[/tex]-component of the total force acting on the block is:
[tex]\[ \overrightarrow{F_y} = 167.572 \, \text{N} \][/tex]