Answer :

Certainly! Let's solve the given expression step-by-step:

The expression to be evaluated is:

[tex]\[ \frac{18 + \sqrt{18^2 + 4 \cdot 6 \cdot 18}}{2 \cdot 6} \][/tex]

### Step 1: Calculate the Discriminant

First, let's compute the value inside the square root:

[tex]\[ 18^2 = 324 \][/tex]
[tex]\[ 4 \cdot 6 \cdot 18 = 432 \][/tex]

Adding these together:

[tex]\[ 18^2 + 4 \cdot 6 \cdot 18 = 324 + 432 = 756 \][/tex]

### Step 2: Calculate the Square Root

Next, compute the square root of 756:

[tex]\[ \sqrt{756} \approx 27.49545416973504 \][/tex]

### Step 3: Calculate the Numerator

Add this square root value to 18:

[tex]\[ 18 + 27.49545416973504 = 45.49545416973504 \][/tex]

### Step 4: Calculate the Denominator

Calculate the denominator:

[tex]\[ 2 \cdot 6 = 12 \][/tex]

### Step 5: Divide the Numerator by the Denominator

Finally, divide the result of the numerator by the denominator:

[tex]\[ \frac{45.49545416973504}{12} \approx 3.79128784747792 \][/tex]

### Conclusion

Hence, the value of the given expression is:

[tex]\[ \frac{18 + \sqrt{18^2 + 4 \cdot 6 \cdot 18}}{2 \cdot 6} \approx 3.79128784747792 \][/tex]