To find the initial value of the function [tex]\( y = 7 - 4x \)[/tex], we need to determine the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is equal to 0. The initial value refers to the point where the function intersects the y-axis, which occurs when [tex]\( x = 0 \)[/tex].
1. Start with the given function:
[tex]\[
y = 7 - 4x
\][/tex]
2. Substitute [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[
y = 7 - 4 \cdot 0
\][/tex]
3. Simplify the equation:
[tex]\[
y = 7 - 0
\][/tex]
4. This simplifies to:
[tex]\[
y = 7
\][/tex]
Therefore, the initial value of the function [tex]\( y = 7 - 4x \)[/tex] is 7. The correct answer is [tex]\( \boxed{7} \)[/tex].