Calculate the value of the following determinants:

[tex]\[
\left|\begin{array}{ccc}
1 & -1 & 3 \\
2 & 5 & 0 \\
-3 & 1 & 2
\end{array}\right|
\][/tex]

[tex]\[
\left|\begin{array}{ccc}
-1 & -8 & 2 \\
9 & 1 & 0 \\
4 & 1 & 2
\end{array}\right|
= 65
\][/tex]



Answer :

To calculate the determinant of the matrix
[tex]\[ \left|\begin{array}{ccc} 1 & -1 & 3 \\ 2 & 5 & 0 \\ -3 & 1 & 2 \end{array}\right| \][/tex]

we'll use the cofactor expansion method (also known as Laplace expansion). Let's apply this method to the first row. The determinant can be written as:

[tex]\[ \text{det} = 1 \cdot \left|\begin{array}{cc} 5 & 0 \\ 1 & 2 \end{array}\right| - (-1) \cdot \left|\begin{array}{cc} 2 & 0 \\ -3 & 2 \end{array}\right| + 3 \cdot \left|\begin{array}{cc} 2 & 5 \\ -3 & 1 \end{array}\right| \][/tex]

Now we need to calculate the determinants of the 2x2 matrices:

1. Calculate [tex]\(\left|\begin{array}{cc} 5 & 0 \\ 1 & 2 \end{array}\right|\)[/tex]:
[tex]\[ \left|\begin{array}{cc} 5 & 0 \\ 1 & 2 \end{array}\right| = (5 \cdot 2 - 0 \cdot 1) = 10 \][/tex]

2. Calculate [tex]\(\left|\begin{array}{cc} 2 & 0 \\ -3 & 2 \end{array}\right|\)[/tex]:
[tex]\[ \left|\begin{array}{cc} 2 & 0 \\ -3 & 2 \end{array}\right| = (2 \cdot 2 - 0 \cdot (-3)) = 4 \][/tex]

3. Calculate [tex]\(\left|\begin{array}{cc} 2 & 5 \\ -3 & 1 \end{array}\right|\)[/tex]:
[tex]\[ \left|\begin{array}{cc} 2 & 5 \\ -3 & 1 \end{array}\right| = (2 \cdot 1 - 5 \cdot (-3)) = 2 + 15 = 17 \][/tex]

Substituting these values back, we get:

[tex]\[ \text{det} = 1 \cdot 10 - (-1) \cdot 4 + 3 \cdot 17 \][/tex]

[tex]\[ = 10 + 4 + 51 \][/tex]

[tex]\[ = 65 \][/tex]

So, the value of the determinant is [tex]\(65\)[/tex].