Answer :
To determine the validity of the comparisons given in the question, let's analyze each statement step-by-step:
### Values Provided
From the table, we have the following variances above or below the average score:
1. Week 1: [tex]\( 2 \frac{1}{8} \)[/tex]
[tex]\[ 2 \frac{1}{8} = 2 + \frac{1}{8} = \frac{16}{8} + \frac{1}{8} = \frac{17}{8} \approx 2.125 \][/tex]
2. Week 2: 1.6
3. Week 3: [tex]\( -2 \frac{1}{8} \)[/tex]
[tex]\[ -2 \frac{1}{8} = - (2 + \frac{1}{8}) = - \left(\frac{16}{8} + \frac{1}{8}\right) = - \frac{17}{8} \approx -2.125 \][/tex]
4. Week 4: -1.8
5. Week 5: [tex]\( -1 \frac{4}{5} \)[/tex]
[tex]\[ -1 \frac{4}{5} = - (1 + \frac{4}{5}) = - \left(1 + 0.8\right) = -1.8 \][/tex]
### Comparison Analysis
1. Week 1 = Week 3:
- Week 1 value: 2.125
- Week 3 value: -2.125
[tex]\[\text{Result: } 2.125 \neq -2.125 \implies \text{False} \][/tex]
2. Week 4 = Week 5:
- Week 4 value: -1.8
- Week 5 value: -1.8
[tex]\[\text{Result: } -1.8 == -1.8 \implies \text{True} \][/tex]
3. Week 2 < Week 4:
- Week 2 value: 1.6
- Week 4 value: -1.8
[tex]\[\text{Result: } 1.6 \not < -1.8 \implies \text{False} \][/tex]
4. Week 5 < Week 3:
- Week 5 value: -1.8
- Week 3 value: -2.125
[tex]\[\text{Result: } -1.8 \not < -2.125 \implies \text{False} \][/tex]
### Summary
- The comparison Week 1 = Week 3 is false.
- The comparison Week 4 = Week 5 is true.
- The comparison Week 2 < Week 4 is false.
- The comparison Week 5 < Week 3 is false.
Therefore, the only true statement is:
Week 4 = Week 5
### Values Provided
From the table, we have the following variances above or below the average score:
1. Week 1: [tex]\( 2 \frac{1}{8} \)[/tex]
[tex]\[ 2 \frac{1}{8} = 2 + \frac{1}{8} = \frac{16}{8} + \frac{1}{8} = \frac{17}{8} \approx 2.125 \][/tex]
2. Week 2: 1.6
3. Week 3: [tex]\( -2 \frac{1}{8} \)[/tex]
[tex]\[ -2 \frac{1}{8} = - (2 + \frac{1}{8}) = - \left(\frac{16}{8} + \frac{1}{8}\right) = - \frac{17}{8} \approx -2.125 \][/tex]
4. Week 4: -1.8
5. Week 5: [tex]\( -1 \frac{4}{5} \)[/tex]
[tex]\[ -1 \frac{4}{5} = - (1 + \frac{4}{5}) = - \left(1 + 0.8\right) = -1.8 \][/tex]
### Comparison Analysis
1. Week 1 = Week 3:
- Week 1 value: 2.125
- Week 3 value: -2.125
[tex]\[\text{Result: } 2.125 \neq -2.125 \implies \text{False} \][/tex]
2. Week 4 = Week 5:
- Week 4 value: -1.8
- Week 5 value: -1.8
[tex]\[\text{Result: } -1.8 == -1.8 \implies \text{True} \][/tex]
3. Week 2 < Week 4:
- Week 2 value: 1.6
- Week 4 value: -1.8
[tex]\[\text{Result: } 1.6 \not < -1.8 \implies \text{False} \][/tex]
4. Week 5 < Week 3:
- Week 5 value: -1.8
- Week 3 value: -2.125
[tex]\[\text{Result: } -1.8 \not < -2.125 \implies \text{False} \][/tex]
### Summary
- The comparison Week 1 = Week 3 is false.
- The comparison Week 4 = Week 5 is true.
- The comparison Week 2 < Week 4 is false.
- The comparison Week 5 < Week 3 is false.
Therefore, the only true statement is:
Week 4 = Week 5