(03.01 MC)

Simplify [tex]\sqrt{5}(6-4 \sqrt{3})[/tex].

A. 9

B. [tex]30 \sqrt{3}[/tex]

C. [tex]6 \sqrt{5}-4 \sqrt{15}[/tex]

D. [tex]\sqrt{30}-20 \sqrt{3}[/tex]



Answer :

To simplify the expression [tex]\(\sqrt{5}(6 - 4\sqrt{3})\)[/tex], we can follow these steps:

1. Distribute [tex]\(\sqrt{5}\)[/tex] through the expression inside the parentheses:
[tex]\[ \sqrt{5}(6 - 4\sqrt{3}) \][/tex]

2. Distribute [tex]\(\sqrt{5}\)[/tex] to each term inside the parentheses separately:
[tex]\[ \sqrt{5} \cdot 6 - \sqrt{5} \cdot 4\sqrt{3} \][/tex]

3. Multiply [tex]\(\sqrt{5}\)[/tex] with 6:
[tex]\[ 6\sqrt{5} \][/tex]

4. Multiply [tex]\(\sqrt{5}\)[/tex] with [tex]\(4\sqrt{3}\)[/tex]:
[tex]\[ 4\sqrt{5} \cdot \sqrt{3} \][/tex]

5. Combine the square roots:
[tex]\[ 4\sqrt{15} \][/tex]

6. Combine the expressions from steps 3 and 5:
[tex]\[ 6\sqrt{5} - 4\sqrt{15} \][/tex]

Hence, the simplified form of the expression [tex]\(\sqrt{5}(6 - 4\sqrt{3})\)[/tex] is:
[tex]\[ 6\sqrt{5} - 4\sqrt{15} \][/tex]

So, the correct answer is:
[tex]\[ \boxed{6\sqrt{5} - 4\sqrt{15}} \][/tex]