Rewrite the expression with a rational exponent as a radical expression.

[tex]\[
\left(3^{\frac{2}{3}}\right)^{\frac{1}{6}}
\][/tex]

A. [tex]\(\sqrt[6]{3}\)[/tex]

B. [tex]\(\sqrt[9]{3}\)[/tex]

C. [tex]\(\sqrt[18]{3}\)[/tex]

D. [tex]\(\sqrt[6]{3^3}\)[/tex]



Answer :

To rewrite the expression [tex]\(\left(3^{\frac{2}{3}}\right)^{\frac{1}{6}}\)[/tex] with a rational exponent as a radical expression, we can follow these steps:

1. Start with the given expression:

[tex]\[ \left(3^{\frac{2}{3}}\right)^{\frac{1}{6}} \][/tex]

2. Use the property of exponents that states [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]. Apply this property to combine the exponents:

[tex]\[ 3^{\left(\frac{2}{3} \cdot \frac{1}{6}\right)} \][/tex]

3. Multiply the exponents [tex]\(\frac{2}{3}\)[/tex] and [tex]\(\frac{1}{6}\)[/tex]:

[tex]\[ \frac{2}{3} \cdot \frac{1}{6} = \frac{2 \times 1}{3 \times 6} = \frac{2}{18} = \frac{1}{9} \][/tex]

4. Now the expression is:

[tex]\[ 3^{\frac{1}{9}} \][/tex]

5. The exponent [tex]\(\frac{1}{9}\)[/tex] indicates the 9th root of 3. Therefore, we can rewrite the expression as a radical expression:

[tex]\[ \sqrt[9]{3} \][/tex]

So, the radical expression equivalent to [tex]\(\left(3^{\frac{2}{3}}\right)^{\frac{1}{6}}\)[/tex] is:

[tex]\[ \sqrt[9]{3} \][/tex]