Answer: 12 units ²
Step-by-step explanation:
We can break the given figure up into a trapezoid and a triangle. See the attached image. Now, we will find the total area.
[tex]\displaystyle \text{Total area}=\text{Area of trapezoid}\;+\;\text{Area of triangle}[/tex]
[tex]\displaystyle \text{Total area}=(1/2)(b_1+b_2)(h)\;+\;(1/2)(b)(h)[/tex]
[tex]\displaystyle \text{Total area}=(1/2)(5+3)(2)\;+\;(1/2)(4)(2)[/tex]
[tex]\displaystyle \text{Total area}=(1/2)(8)(2)\;+\;(1/2)(4)(2)[/tex]
[tex]\displaystyle \text{Total area}=(2/2)(8)\;+\;(2/2)(4)[/tex]
[tex]\displaystyle \text{Total area}=8+4[/tex]
[tex]\displaystyle \text{Total area}=12[/tex]