Given that [tex]\((x+2)\)[/tex] and [tex]\((x-1)\)[/tex] are factors of the quadratic expression below, what are the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex]?

[tex]\[x^2 + (a+2)x + a + b\][/tex]

F. [tex]\( \frac{a}{-4}, \quad \frac{b}{5} \)[/tex]

G. [tex]\(-3, \quad 1\)[/tex]

H. [tex]\(-3, \quad 5\)[/tex]

J. [tex]\(-1, \quad 3\)[/tex]

K. [tex]\(-1, \quad -1\)[/tex]



Answer :

To determine the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] such that [tex]\((x+2)\)[/tex] and [tex]\((x-1)\)[/tex] are factors of the quadratic expression [tex]\( x^2 + (a+2)x + a + b \)[/tex], we start by considering what it means for these factors to be true.

Given that [tex]\((x+2)\)[/tex] and [tex]\((x-1)\)[/tex] are factors, we can express the quadratic equation as:

[tex]\[ (x+2)(x-1) \][/tex]

Next, we expand [tex]\((x+2)(x-1)\)[/tex]:

[tex]\[ (x + 2)(x - 1) = x(x - 1) + 2(x - 1) = x^2 - x + 2x - 2 = x^2 + x - 2 \][/tex]

Now, this expanded form should be identical to the original quadratic expression [tex]\( x^2 + (a+2)x + a + b \)[/tex]:

[tex]\[ x^2 + (a+2)x + a + b = x^2 + x - 2 \][/tex]

To find the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex], we compare the coefficients of corresponding terms:

For the [tex]\( x \)[/tex]-coefficients:
[tex]\[ a + 2 = 1 \][/tex]
Solving for [tex]\( a \)[/tex]:
[tex]\[ a + 2 = 1 \implies a = 1 - 2 \implies a = -1 \][/tex]

For the constant terms:
[tex]\[ a + b = -2 \][/tex]
We already found [tex]\( a = -1 \)[/tex], so substitute [tex]\( a \)[/tex] into the equation:
[tex]\[ -1 + b = -2 \implies b = -2 + 1 \implies b = -1 \][/tex]

Thus, the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are [tex]\( -1 \)[/tex] and [tex]\( -1 \)[/tex] respectively.

Therefore, the correct answer is:

[tex]\[ \boxed{-1 \quad -1} \][/tex]