What is the value of [tex]\lfloor -12 \rfloor[/tex]?

A. [tex]-13[/tex]
B. [tex]-12[/tex]
C. [tex]12[/tex]
D. [tex]13[/tex]



Answer :

To solve for the value of [tex]\(\lfloor -12 \rfloor\)[/tex], we need to understand what the floor function does. The floor function, denoted as [tex]\(\lfloor x \rfloor\)[/tex], gives the greatest integer less than or equal to [tex]\(x\)[/tex].

Now, consider the number [tex]\(-12\)[/tex]. The greatest integer that is less than or equal to [tex]\(-12\)[/tex] is [tex]\(-12\)[/tex] itself.

Therefore, the value of [tex]\(\lfloor -12 \rfloor\)[/tex] is:
[tex]\[ -12 \][/tex]

The correct answer is:
[tex]\[ -12 \][/tex]