Find the exact value without using a calculator.

[tex] \sec \frac{3 \pi}{4} [/tex]

A. [tex]-2[/tex]

B. [tex]-\sqrt{2}[/tex]

C. [tex]\frac{\sqrt{2}}{2}[/tex]

D. [tex]-\frac{2 \sqrt{3}}{3}[/tex]



Answer :

To solve the problem of finding the exact value of [tex]\(\sec \frac{3\pi}{4}\)[/tex], let's proceed step by step:

1. Recognize the definition:
The secant function is the reciprocal of the cosine function. Therefore,
[tex]\[ \sec \theta = \frac{1}{\cos \theta} \][/tex]

2. Identify [tex]\(\theta\)[/tex]:
Here, [tex]\(\theta = \frac{3\pi}{4}\)[/tex].

3. Determine the cosine of the angle:
The angle [tex]\(\frac{3\pi}{4}\)[/tex] is in the second quadrant, where the cosine function is negative. We can use the unit circle or known values of trigonometric functions to find:
[tex]\[ \cos \left(\frac{3\pi}{4}\right) = -\cos \left(\frac{\pi}{4}\right) \][/tex]
Since [tex]\(\cos \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\)[/tex], we have:
[tex]\[ \cos \left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2} \][/tex]

4. Calculate the secant:
Using the definition of secant, we get:
[tex]\[ \sec \left(\frac{3\pi}{4}\right) = \frac{1}{\cos \left(\frac{3\pi}{4}\right)} = \frac{1}{-\frac{\sqrt{2}}{2}} \][/tex]

5. Simplify the expression:
Simplifying the fraction, we get:
[tex]\[ \frac{1}{-\frac{\sqrt{2}}{2}} = -\frac{2}{\sqrt{2}} = -\frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = -\frac{2 \sqrt{2}}{2} = -\sqrt{2} \][/tex]

Therefore, the exact value of [tex]\(\sec \left(\frac{3\pi}{4}\right)\)[/tex] is:
[tex]\[ -\sqrt{2} \][/tex]