Select the best answer for the question.

11. What is the result if you divide [tex]\frac{18 r^4 s^5 t^6}{-3 r^2 s t^3}[/tex]?

A. [tex]-6 r^2 s^4 t^3[/tex]

B. [tex]-6 r^2 s^5 t^3[/tex]

C. [tex]6 r^2 s^5 t^3[/tex]

D. [tex]6 r^2 s^4 t^3[/tex]



Answer :

Certainly! Let's find the result of the given expression step by step:

We have to divide the expression [tex]\(\frac{18 r^4 s^5 t^6}{-3 r^2 s t^3}\)[/tex].

1. Divide the numerical coefficients:

[tex]\[ \frac{18}{-3} = -6 \][/tex]

2. Simplify the powers of [tex]\(r\)[/tex]:

In the numerator, the power of [tex]\(r\)[/tex] is 4, and in the denominator, the power of [tex]\(r\)[/tex] is 2.

[tex]\[ r^{4 - 2} = r^2 \][/tex]

3. Simplify the powers of [tex]\(s\)[/tex]:

In the numerator, the power of [tex]\(s\)[/tex] is 5, and in the denominator, the power of [tex]\(s\)[/tex] is 1.

[tex]\[ s^{5 - 1} = s^4 \][/tex]

4. Simplify the powers of [tex]\(t\)[/tex]:

In the numerator, the power of [tex]\(t\)[/tex] is 6, and in the denominator, the power of [tex]\(t\)[/tex] is 3.

[tex]\[ t^{6 - 3} = t^3 \][/tex]

Putting it all together, we get:

[tex]\[ \frac{18 r^4 s^5 t^6}{-3 r^2 s t^3} = -6 r^2 s^4 t^3 \][/tex]

Therefore, the correct answer is:

A. [tex]\(-6 r^2 s^4 t^3\)[/tex]