Answer :
To find [tex]\(X\)[/tex] given the equation [tex]\(X - A = B\)[/tex], we first need to isolate [tex]\(X\)[/tex]. We can do this by adding matrix [tex]\(A\)[/tex] to both sides of the equation. The step-by-step solution is as follows:
Given the equation:
[tex]\[ X - A = B \][/tex]
Add matrix [tex]\(A\)[/tex] to both sides:
[tex]\[ X = A + B \][/tex]
Now, let's find the matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex] and then add them together.
Matrix [tex]\(A\)[/tex] is:
[tex]\[ A = \begin{pmatrix} 2 & -7 \\ 6 & 1 \end{pmatrix} \][/tex]
Matrix [tex]\(B\)[/tex] is:
[tex]\[ B = \begin{pmatrix} -9 & 5 \\ 1 & -1 \end{pmatrix} \][/tex]
To find [tex]\(X\)[/tex], we add matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex] element-wise:
[tex]\[ X = \begin{pmatrix} 2 & -7 \\ 6 & 1 \end{pmatrix} + \begin{pmatrix} -9 & 5 \\ 1 & -1 \end{pmatrix} \][/tex]
Calculate each element of [tex]\(X\)[/tex]:
1. The element in the first row and first column of [tex]\(X\)[/tex] is:
[tex]\[ 2 + (-9) = -7 \][/tex]
2. The element in the first row and second column of [tex]\(X\)[/tex] is:
[tex]\[ -7 + 5 = -2 \][/tex]
3. The element in the second row and first column of [tex]\(X\)[/tex] is:
[tex]\[ 6 + 1 = 7 \][/tex]
4. The element in the second row and second column of [tex]\(X\)[/tex] is:
[tex]\[ 1 + (-1) = 0 \][/tex]
Therefore, the matrix [tex]\(X\)[/tex] is:
[tex]\[ X = \begin{pmatrix} -7 & -2 \\ 7 & 0 \end{pmatrix} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\begin{pmatrix}-7 & -2 \\ 7 & 0\end{pmatrix}} \][/tex]
Given the equation:
[tex]\[ X - A = B \][/tex]
Add matrix [tex]\(A\)[/tex] to both sides:
[tex]\[ X = A + B \][/tex]
Now, let's find the matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex] and then add them together.
Matrix [tex]\(A\)[/tex] is:
[tex]\[ A = \begin{pmatrix} 2 & -7 \\ 6 & 1 \end{pmatrix} \][/tex]
Matrix [tex]\(B\)[/tex] is:
[tex]\[ B = \begin{pmatrix} -9 & 5 \\ 1 & -1 \end{pmatrix} \][/tex]
To find [tex]\(X\)[/tex], we add matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex] element-wise:
[tex]\[ X = \begin{pmatrix} 2 & -7 \\ 6 & 1 \end{pmatrix} + \begin{pmatrix} -9 & 5 \\ 1 & -1 \end{pmatrix} \][/tex]
Calculate each element of [tex]\(X\)[/tex]:
1. The element in the first row and first column of [tex]\(X\)[/tex] is:
[tex]\[ 2 + (-9) = -7 \][/tex]
2. The element in the first row and second column of [tex]\(X\)[/tex] is:
[tex]\[ -7 + 5 = -2 \][/tex]
3. The element in the second row and first column of [tex]\(X\)[/tex] is:
[tex]\[ 6 + 1 = 7 \][/tex]
4. The element in the second row and second column of [tex]\(X\)[/tex] is:
[tex]\[ 1 + (-1) = 0 \][/tex]
Therefore, the matrix [tex]\(X\)[/tex] is:
[tex]\[ X = \begin{pmatrix} -7 & -2 \\ 7 & 0 \end{pmatrix} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\begin{pmatrix}-7 & -2 \\ 7 & 0\end{pmatrix}} \][/tex]
Answer:
A
Step-by-step explanation:
To find X given that X - A = B , we can rearrange the equation to solve for X :
X = A + B
Let's calculate A + B :
Given:
A =[tex]\left[\begin{array}{cc} 2 & -7 \\ 6 & 1 \end{array}\right][/tex]
and
B = [tex]\left[\begin{array}{cc} -9 & 5 \\ 1 & -1 \end{array}\right][/tex]
Add the corresponding elements of matrices A and B :
[tex]X = \left[\begin{array}{cc} 2 & -7 \\ 6 & 1 \end{array}\right] + \left[\begin{array}{cc} -9 & 5 \\ 1 & -1 \end{array}\right] \\\\ \left[\begin{array}{cc} 2 + (-9) & -7 + 5 \\ 6 + 1 & 1 + (-1) \end{array}\right] \\\\ \left[\begin{array}{cc} -7 & -2 \\ 7 & 0 \end{array}\right][/tex]
Therefore, the correct answer is:
A.[tex]\left[\begin{array}{cc} -7 & -2 \\ 7 & 0 \end{array}\right][/tex]