Answer :
Let's solve the given equation step-by-step:
[tex]\[ \sqrt{100} + 3^2 + \sqrt{16} = 50 + 9 + 4 \][/tex]
We will begin by evaluating each term on the left-hand side of the equation individually.
1. Calculate [tex]\( \sqrt{100} \)[/tex]:
[tex]\[ \sqrt{100} = 10.0 \][/tex]
2. Calculate [tex]\( 3^2 \)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]
3. Calculate [tex]\( \sqrt{16} \)[/tex]:
[tex]\[ \sqrt{16} = 4.0 \][/tex]
Next, we sum these evaluated terms from the left-hand side of the equation:
[tex]\[ 10.0 + 9 + 4.0 = 23.0 \][/tex]
So, the left-hand side of the equation simplifies to [tex]\( 23.0 \)[/tex].
Now, let's consider the specific values provided on the right-hand side of the equation:
[tex]\[ 50 + 9 + 4 = 63 \][/tex]
We need to compare the two sides:
- Left side sum: [tex]\( 23.0 \)[/tex]
- Right side: [tex]\( 63 \)[/tex]
Clearly, the two sides are not equal:
[tex]\[ 23.0 \neq 63 \][/tex]
Therefore, the given equation [tex]\( \sqrt{100} + 3^2 + \sqrt{16} = 50 + 9 + 4 \)[/tex] does not hold true, as the left-hand side (23.0) is not equal to the right-hand side (63).
[tex]\[ \sqrt{100} + 3^2 + \sqrt{16} = 50 + 9 + 4 \][/tex]
We will begin by evaluating each term on the left-hand side of the equation individually.
1. Calculate [tex]\( \sqrt{100} \)[/tex]:
[tex]\[ \sqrt{100} = 10.0 \][/tex]
2. Calculate [tex]\( 3^2 \)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]
3. Calculate [tex]\( \sqrt{16} \)[/tex]:
[tex]\[ \sqrt{16} = 4.0 \][/tex]
Next, we sum these evaluated terms from the left-hand side of the equation:
[tex]\[ 10.0 + 9 + 4.0 = 23.0 \][/tex]
So, the left-hand side of the equation simplifies to [tex]\( 23.0 \)[/tex].
Now, let's consider the specific values provided on the right-hand side of the equation:
[tex]\[ 50 + 9 + 4 = 63 \][/tex]
We need to compare the two sides:
- Left side sum: [tex]\( 23.0 \)[/tex]
- Right side: [tex]\( 63 \)[/tex]
Clearly, the two sides are not equal:
[tex]\[ 23.0 \neq 63 \][/tex]
Therefore, the given equation [tex]\( \sqrt{100} + 3^2 + \sqrt{16} = 50 + 9 + 4 \)[/tex] does not hold true, as the left-hand side (23.0) is not equal to the right-hand side (63).