Using Cramer's Rule, what is the value of [tex]\(y\)[/tex] in the solution to the system of linear equations below?

[tex]\[
\begin{array}{l}
9x - 2y = 5 \\
-3x - 4y = -4
\end{array}
\][/tex]

A. [tex]\(\frac{\left|\begin{array}{cc}9 & 5 \\ -3 & -4\end{array}\right|}{-42} = \frac{2}{3}\)[/tex]

B. [tex]\(\frac{\left|\begin{array}{cc}9 & 5 \\ -3 & -4\end{array}\right|}{-42} = \frac{1}{2}\)[/tex]

C. [tex]\(\frac{\left|\begin{array}{cc}5 & -2 \\ -4 & -4\end{array}\right|}{-42} = \frac{2}{3}\)[/tex]



Answer :

To solve for [tex]\( y \)[/tex] using Cramer's Rule, follow these steps:

1. Write the system of equations:

[tex]\[ \begin{cases} 9x - 2y = 5 \\ -3x - 4y = -4 \end{cases} \][/tex]

2. Determine the coefficient matrix [tex]\( A \)[/tex] and the constants matrix:

[tex]\[ A = \begin{pmatrix} 9 & -2 \\ -3 & -4 \end{pmatrix} ,\quad B = \begin{pmatrix} 5 \\ -4 \end{pmatrix} \][/tex]

3. Calculate the determinant [tex]\( D \)[/tex] of matrix [tex]\( A \)[/tex]:

[tex]\[ D = \begin{vmatrix} 9 & -2 \\ -3 & -4 \end{vmatrix} = (9)(-4) - (-2)(-3) = -36 - 6 = -42 \][/tex]

4. Calculate the determinant [tex]\( D_y \)[/tex] for the [tex]\( y \)[/tex]-component by replacing the [tex]\( y \)[/tex]-column in [tex]\( A \)[/tex] with the constants matrix [tex]\( B \)[/tex]:

[tex]\[ D_y = \begin{vmatrix} 9 & 5 \\ -3 & -4 \end{vmatrix} = (9)(-4) - (5)(-3) = -36 + 15 = -21 \][/tex]

5. Calculate [tex]\( y \)[/tex] using Cramer's Rule:

[tex]\[ y = \frac{D_y}{D} = \frac{-21}{-42} = \frac{1}{2} \][/tex]

Therefore, the value of [tex]\( y \)[/tex] in the solution to the system of linear equations is [tex]\( \frac{1}{2} \)[/tex].