Determine which answer in the solution set will make the equation true.

[tex]\[ 5f - 14 = 4f - 16 \][/tex]

Solution set: [tex]\(\{-16, -2, 2, 4\}\)[/tex]

A. [tex]\(-16\)[/tex]
B. [tex]\(-2\)[/tex]
C. [tex]\(2\)[/tex]
D. [tex]\(4\)[/tex]



Answer :

Let's determine which value in the solution set [tex]\( S = \{-16, -2, 2, 4\} \)[/tex] will make the equation true for [tex]\( 5f - 14 = 4f - 16 \)[/tex].

### Step-by-Step Solution

1. Given Equation:
[tex]\[ 5f - 14 = 4f - 16 \][/tex]

2. Isolate f:
- Subtract [tex]\( 4f \)[/tex] from both sides:
[tex]\[ 5f - 14 - 4f = 4f - 16 - 4f \][/tex]
Simplifying this gives:
[tex]\[ f - 14 = -16 \][/tex]

- Add 14 to both sides:
[tex]\[ f - 14 + 14 = -16 + 14 \][/tex]
Simplifying this gives:
[tex]\[ f = -2 \][/tex]

3. Check if the value of [tex]\( f \)[/tex] is in the provided solution set [tex]\( S \)[/tex]:
[tex]\[ S = \{-16, -2, 2, 4\} \][/tex]

The value [tex]\( f = -2 \)[/tex] is indeed in the set [tex]\( S \)[/tex].

### Conclusion

The value from the solution set that makes the equation [tex]\( 5f - 14 = 4f - 16 \)[/tex] true is:
[tex]\[ \boxed{-2} \][/tex]