Answer :

To determine if the function [tex]\( f(x) = 6 x^4 + 7 x^2 \)[/tex] is even, odd, or neither, we follow these steps:

1. Definition of Even Function:
A function [tex]\( f(x) \)[/tex] is even if for all [tex]\( x \)[/tex] in the domain of [tex]\( f \)[/tex], [tex]\( f(-x) = f(x) \)[/tex].

2. Definition of Odd Function:
A function [tex]\( f(x) \)[/tex] is odd if for all [tex]\( x \)[/tex] in the domain of [tex]\( f \)[/tex], [tex]\( f(-x) = -f(x) \)[/tex].

3. Calculate [tex]\( f(-x) \)[/tex]:

Let's substitute [tex]\( -x \)[/tex] into the function:
[tex]\[ f(-x) = 6 (-x)^4 + 7 (-x)^2 \][/tex]

Simplify the expression:
[tex]\[ f(-x) = 6(-x)^4 + 7(-x)^2 \][/tex]
Since [tex]\((-x)^4 = x^4\)[/tex] and [tex]\((-x)^2 = x^2\)[/tex], we get:
[tex]\[ f(-x) = 6 x^4 + 7 x^2 \][/tex]

4. Compare [tex]\( f(-x) \)[/tex] with [tex]\( f(x) \)[/tex]:

We have:
[tex]\[ f(x) = 6 x^4 + 7 x^2 \][/tex]
[tex]\[ f(-x) = 6 x^4 + 7 x^2 \][/tex]

Since [tex]\( f(-x) = f(x) \)[/tex], the function satisfies the condition for being an even function.

5. Check if the Function is Odd:

If the function were odd, we should have:
[tex]\[ f(-x) = -f(x) \][/tex]

However:
[tex]\[ f(-x) = 6 x^4 + 7 x^2 \][/tex]
[tex]\[ -f(x) = -(6 x^4 + 7 x^2) = -6 x^4 - 7 x^2 \][/tex]

Clearly, [tex]\( f(-x) \neq -f(x) \)[/tex].

6. Conclusion:

Since [tex]\( f(-x) = f(x) \)[/tex], the function [tex]\( f(x) = 6 x^4 + 7 x^2 \)[/tex] is an even function. It is not odd, nor is it neither.

Thus, the function [tex]\( f(x) = 6 x^4 + 7 x^2 \)[/tex] is Even.