To determine the gravitational potential energy of an object, we use the formula:
[tex]\[ \text{Potential Energy} = \text{mass} \times \text{height} \times \text{gravity} \][/tex]
Let's break down each component:
- Mass ([tex]\( m \)[/tex]): The mass of the object is given as 70 kilograms.
- Height ([tex]\( h \)[/tex]): The object is supported at a height of 8 meters above the ground.
- Gravity ([tex]\( g \)[/tex]): The acceleration due to gravity is a constant value of approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
Now we can substitute these values into the formula:
[tex]\[ \text{Potential Energy} = 70 \, \text{kg} \times 8 \, \text{m} \times 9.8 \, \text{m/s}^2 \][/tex]
When we calculate this:
[tex]\[ \text{Potential Energy} = 70 \times 8 \times 9.8 \][/tex]
[tex]\[ \text{Potential Energy} = 560 \times 9.8 \][/tex]
[tex]\[ \text{Potential Energy} = 5488 \, \text{J} \][/tex]
Therefore, the potential energy of the object is [tex]\( 5488 \, \text{J} \)[/tex].
The best answer is:
D. 5488 J