Complete the following proof by dragging and dropping the correct reason in the spaces below.
Given: [tex]$Q$[/tex] is between [tex]$P$[/tex] and [tex]$R$[/tex], [tex]$R$[/tex] is between [tex]$Q$[/tex] and [tex]$S$[/tex], [tex]$PR = QS$[/tex]
Prove: [tex]$PQ = RS$[/tex]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{Statement} & Reason \\
\hline \multicolumn{1}{|c|}{Q is between P and R} & Given \\
\hline [tex]$R$[/tex] is between [tex]$Q$[/tex] and [tex]$S$[/tex] & Given \\
\hline [tex]$QR + RS = QS$[/tex] & Segment Addition Postulate \\
\hline [tex]$PR = QS$[/tex] & Given \\
\hline [tex]$PQ + QR = PR$[/tex] & Segment Addition Postulate \\
\hline [tex]$PQ + QR = QR + RS$[/tex] & Substitution Property of Equality \\
\hline [tex]$PQ + QR - QR = QR + RS - QR$[/tex] & Subtraction Property of Equality \\
\hline [tex]$PQ = RS$[/tex] & Simplify \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline
Given & Segment Addition Postulate \\
Transitive Property & Subtraction Property of Equality \\
Reflexive Property & Substitution Property of Equality \\
Simplify & Definition of Congruent Segments \\
Addition Property of Equality & Definition of Midpoint \\
Multiplication Property of Equality & Division Property of Equality \\
\hline
\end{tabular}