Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.

Match each system of equations to its solution represented by an augmented matrix.

1.
[tex]\[
\begin{array}{c}
x + y + z = 1,100 \\
x - 2y - z = -500 \\
2x + 3y + 2z = 2,600
\end{array}
\][/tex]

2.
[tex]\[
\begin{array}{c}
x + y + z = 2,600 \\
x + y - z = 600 \\
2x + y + 2z = 3,050
\end{array}
\][/tex]

3.
[tex]\[
\begin{array}{c}
x + y + z = 1,900 \\
x - y - 2z = -2,000 \\
2x + 2y + z = 1,100
\end{array}
\][/tex]

4.
[tex]\[
\begin{array}{c}
x + y + z = 3,300 \\
x + y - z = 1,500 \\
2x + 3y + 2z = 7,700
\end{array}
\][/tex]

A.
[tex]\[
\left[
\begin{array}{ccc|c}
1 & 0 & 0 & 750 \\
0 & 1 & 0 & 850 \\
0 & 0 & 1 & 1,000
\end{array}
\right]
\][/tex]

B.
[tex]\[
\left[
\begin{array}{ccc|c}
1 & 0 & 0 & 500 \\
0 & 1 & 0 & 400 \\
0 & 0 & 1 & 200
\end{array}
\right]
\][/tex]

C.
[tex]\[
\left[
\begin{array}{ccc|c}
1 & 0 & 0 & 400 \\
0 & 1 & 0 & 600 \\
0 & 0 & 1 & 900
\end{array}
\right]
\][/tex]

D.
[tex]\[
\left[
\begin{array}{ccc|c}
1 & 0 & 0 & 1,300 \\
0 & 1 & 0 & 1,100 \\
0 & 0 & 1 & 900
\end{array}
\right]
\][/tex]

E.
[tex]\[
\left[
\begin{array}{ccc|c}
1 & 0 & 0 & 400 \\
0 & 1 & 0 & 600 \\
0 & 0 & 1 & 900
\end{array}
\right]
\][/tex]



Answer :

Let's match each system of equations to its solution represented by an augmented matrix.

### Systems of Equations and Solutions:

1. System 1:
[tex]\[ \begin{array}{c} x + y + z = 1,100 \\ x - 2y - z = -500 \\ 2x + 3y + 2z = 2,600 \end{array} \][/tex]
Solution:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 0 & 750 \\ 0 & 1 & 0 & 850 \\ 0 & 0 & 1 & 1,000 \end{array}\right] \][/tex]

2. System 2:
[tex]\[ \begin{array}{c} x + y + z = 2,600 \\ x + y - z = 600 \\ 2x + y + 2z = 3,050 \end{array} \][/tex]
Solution:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 0 & 1,300 \\ 0 & 1 & 0 & 1,100 \\ 0 & 0 & 1 & 900 \end{array}\right] \][/tex]

3. System 3:
[tex]\[ \begin{array}{c} x + y + z = 1,900 \\ x - y - 2z = -2,000 \\ 2x + 2y + z = 1,100 \end{array} \][/tex]
Solution:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 0 & 500 \\ 0 & 1 & 0 & 400 \\ 0 & 0 & 1 & 200 \end{array}\right] \][/tex]

4. System 4:
[tex]\[ \begin{array}{c} x + y + z = 1,900 \\ x - y - 2z = -2,000 \\ 2x + 2y + z = 2,900 \end{array} \][/tex]
Solution:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 0 & 400 \\ 0 & 1 & 0 & 600 \\ 0 & 0 & 1 & 900 \end{array}\right] \][/tex]

5. System 5:
[tex]\[ \begin{array}{c} x + y + z = 3,300 \\ x + y - z = 1,500 \\ 2x + 3y + 2z = 7,700 \end{array} \][/tex]
Solution:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 0 & 1300 \\ 0 & 1 & 0 & 1100 \\ 0 & 0 & 1 & 900 \end{array}\right] \][/tex]

### Matching:

- [tex]\(\left[\begin{array}{ccc|c}1 & 0 & 0 & 750 \\ 0 & 1 & 0 & 850 \\ 0 & 0 & 1 & 1,000\end{array}\right]\)[/tex] matches with:
* [tex]\(\begin{array}{c} x+y+z=1,100 \\ x-2 y-z=-500 \\ 2 x+3 y+2z=2,600 \end{array}\)[/tex]

- [tex]\(\left[\begin{array}{ccc|c}1 & 0 & 0 & 1,300 \\ 0 & 1 & 0 & 1,100 \\ 0 & 0 & 1 & 900\end{array}\right]\)[/tex] matches with:
* [tex]\(\begin{array}{c} x+y+z=2,600 \\ x+y-z=600 \\ 2 x+y+2 z=3,050 \end{array}\)[/tex]

- [tex]\(\left[\begin{array}{ccc|c}1 & 0 & 0 & 500 \\ 0 & 1 & 0 & 400 \\ 0 & 0 & 1 & 200\end{array}\right]\)[/tex] matches with:
* [tex]\(\begin{array}{c} x+y+z=1,900 \\ x-y-2 z=-2,000 \\ 2 x+2y+z=1,100 \end{array}\)[/tex]

- [tex]\(\left[\begin{array}{ccc|c}1 & 0 & 0 & 400 \\ 0 & 1 & 0 & 600 \\ 0 & 0 & 1 & 900\end{array}\right]\)[/tex] matches with:
* [tex]\(\begin{array}{c} x+y+z=1,900 \\ x-y-2 z=-2,000 \\ 2x+2y+z=2,900 \end{array}\)[/tex]

- [tex]\(\left[\begin{array}{ccc|c}1 & 0 & 0 & 1,300 \\ 0 & 1 & 0 & 1,100 \\ 0 & 0 & 1 & 900\end{array}\right]\)[/tex] matches with:
* [tex]\(\begin{array}{c} x+y+z=3,300 \\ x+y-z=1,500 \\ 2 x+3 y+2 z=7,700 \end{array}\)[/tex]

These are the correct matchings between the systems of equations and their solutions.