```
[tex]$
\begin{array}{l}
=y \rightarrow 1 \quad y\left(y^2+y+1\right) \\
=1(1+1+1)=3 .
\end{array}
$[/tex]

Exercise 14.1

Given that [tex]$\lim _{x \rightarrow a} f(x)=-2$[/tex], [tex]$\lim _{x \rightarrow a} g(x)=0$[/tex], and [tex]$\lim _{x \rightarrow a} h(x)=27$[/tex], find the following limits if they exist:

a. [tex]$\lim _{x \rightarrow a} \sqrt[3]{h(x)}$[/tex]

b. [tex]$\lim _{x \rightarrow a} \frac{g(x)}{f(x)}$[/tex]

c. [tex]$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$[/tex]

d. [tex]$\lim _{x \rightarrow a} \frac{3 f(x)}{h(x)+9 f(x)}$[/tex]

Evaluate the following limits:

a. [tex]$\lim _{x \rightarrow 0}\left(7 x^2-5 x+1\right)$[/tex]

b. [tex]$\lim _{x \rightarrow 2} \frac{2 x-3}{x+5}$[/tex]
```



Answer :

Let's solve the given limits step by step:

### Given Limits:
- [tex]\(\lim_{x \to a} f(x) = -2\)[/tex]
- [tex]\(\lim_{x \to a} g(x) = 0\)[/tex]
- [tex]\(\lim_{x \to a} h(x) = 27\)[/tex]

### Required Limits:

#### a. [tex]\(\lim_{x \to a} \sqrt[3]{h(x)}\)[/tex]

To find this limit, we simply take the cube root of the limit of [tex]\(h(x)\)[/tex]:
[tex]\[ \lim_{x \to a} \sqrt[3]{h(x)} = \sqrt[3]{\lim_{x \to a} h(x)} = \sqrt[3]{27} = 3 \][/tex]

#### b. [tex]\(\lim_{x \to a} \frac{g(x)}{f(x)}\)[/tex]

For this limit, we use the given limits:
[tex]\[ \lim_{x \to a} \frac{g(x)}{f(x)} = \frac{\lim_{x \to a} g(x)}{\lim_{x \to a} f(x)} = \frac{0}{-2} = 0 \][/tex]

#### c. [tex]\(\lim_{x \to a} \frac{f(x)}{g(x)}\)[/tex]

Since [tex]\( \lim_{x \to a} g(x) = 0 \)[/tex], the denominator is zero, meaning this limit does not exist (or is undefined), because division by zero is undefined.

#### d. [tex]\(\lim_{x \to a} \frac{3 f(x)}{h(x) + 9 f(x)}\)[/tex]

First, we substitute the given limits into the expression:
[tex]\[ \text{Numerator: } 3 \lim_{x \to a} f(x) = 3(-2) = -6 \][/tex]
[tex]\[ \text{Denominator: } \lim_{x \to a} (h(x) + 9 f(x)) = \lim_{x \to a} h(x) + 9 \lim_{x \to a} f(x) = 27 + 9(-2) = 27 - 18 = 9 \][/tex]
Thus, the limit is:
[tex]\[ \lim_{x \to a} \frac{3 f(x)}{h(x) + 9 f(x)} = \frac{-6}{9} = -\frac{2}{3} \][/tex]

### Additional Limits:

#### a. [tex]\(\lim_{x \to 0} (7x^2 - 5x + 1)\)[/tex]

To evaluate this limit, we substitute [tex]\( x = 0 \)[/tex] into the polynomial expression:
[tex]\[ 7(0)^2 - 5(0) + 1 = 0 - 0 + 1 = 1 \][/tex]

#### b. [tex]\(\lim_{x \to 2} \frac{2x - 3}{x + 5}\)[/tex]

To find this limit, we substitute [tex]\( x = 2 \)[/tex] into the rational expression:
[tex]\[ \frac{2(2) - 3}{2 + 5} = \frac{4 - 3}{7} = \frac{1}{7} \][/tex]

### Summary of the results:
a. [tex]\( \lim_{x \to a} \sqrt[3]{h(x)} = 3 \)[/tex]

b. [tex]\( \lim_{x \to a} \frac{g(x)}{f(x)} = 0 \)[/tex]

c. [tex]\( \lim_{x \to a} \frac{f(x)}{g(x)} \)[/tex] is undefined.

d. [tex]\( \lim_{x \to a} \frac{3 f(x)}{h(x) + 9 f(x)} = -\frac{2}{3} \)[/tex]

### Evaluate Additional Limits:
a. [tex]\( \lim_{x \to 0} (7x^2 - 5x + 1) = 1 \)[/tex]

b. [tex]\( \lim_{x \to 2} \frac{2x - 3}{x + 5} = \frac{1}{7} \)[/tex]

These results complete the solutions to the provided exercise.

Other Questions