The volume of a solid right pyramid with a square base is [tex]V[/tex] units [tex]^3[/tex] and the length of the base edge is [tex]y[/tex] units.

Which expression represents the height of the pyramid?

A. [tex]\frac{3V}{y^2}[/tex] units

B. [tex](3V - y^2)[/tex] units

C. [tex](V - 3y^2)[/tex] units

D. [tex]\frac{V}{3y^2}[/tex] units



Answer :

To determine the height of a solid right pyramid with a square base, we need to start with the formula for its volume. The volume [tex]\( V \)[/tex] of a pyramid can be expressed as:

[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]

In this case, the base of the pyramid is a square with edge length [tex]\( y \)[/tex]. Therefore, the area of the square base is:

[tex]\[ \text{Base Area} = y^2 \][/tex]

Substituting the base area into the volume formula, we get:

[tex]\[ V = \frac{1}{3} \times y^2 \times \text{Height} \][/tex]

Let [tex]\( h \)[/tex] represent the height of the pyramid. The equation then becomes:

[tex]\[ V = \frac{1}{3} \times y^2 \times h \][/tex]

We want to solve for the height [tex]\( h \)[/tex]. To do this, we rearrange the equation to isolate [tex]\( h \)[/tex]:

[tex]\[ h = \frac{3 \times V}{y^2} \][/tex]

Thus, the correct expression for the height of the pyramid is:

[tex]\[ \frac{3V}{y^2} \text{ units} \][/tex]

Among the given options:

1. [tex]\(\frac{3 V}{y^2}\)[/tex] units
2. [tex]\((3 V - y^2)\)[/tex] units
3. [tex]\((V - 3 y^2)\)[/tex] units
4. [tex]\(\frac{V}{3 y^2}\)[/tex] units

The correct expression that represents the height of the pyramid is:

[tex]\[ \frac{3 V}{y^2} \text{ units} \][/tex]

So, the correct choice is:

[tex]\[ \boxed{\frac{3 V}{y^2}} \text{ units} \][/tex]