Given the base-10 expression:

[tex]\[ \left(0 \times 10^4\right)+\left(4 \times 10^3\right)+\left(0 \times 10^2\right)+\left(5 \times 10^1\right)+\left(2 \times 10^0\right) \][/tex]

What number is represented by the base-10 expression shown?

[tex]\[ \boxed{\phantom{0}} \][/tex]

Enter your answer as an integer or a decimal in the box.



Answer :

Let's break down each term of the given base-10 expression step-by-step.

1. Calculate the first term:
[tex]\[ 0 \times 10^4 = 0 \][/tex]
2. Calculate the second term:
[tex]\[ 4 \times 10^3 = 4000 \][/tex]
3. Calculate the third term:
[tex]\[ 0 \times 10^2 = 0 \][/tex]
4. Calculate the fourth term:
[tex]\[ 5 \times 10^1 = 50 \][/tex]
5. Calculate the fifth term:
[tex]\[ 2 \times 10^0 = 2 \][/tex]

Now, sum up all these terms:
[tex]\[ 0 + 4000 + 0 + 50 + 2 = 4052 \][/tex]

Therefore, the number represented by the base-10 expression is:
[tex]\[ \boxed{4052} \][/tex]