This circle is centered at the point [tex]$(3,2)$[/tex], and the length of its radius is 5. What is the equation of the circle?

A. [tex]$(x-3)^2+(y-2)^2=25$[/tex]

B. [tex]$\left(x^2-3\right)+\left(y^2-2\right)=5^2$[/tex]

C. [tex][tex]$(x+3)^2+(y+2)^2=5$[/tex][/tex]

D. [tex]$(x-2)^2+(y-3)^2=25$[/tex]



Answer :

To determine the equation of a circle given its center and radius, we'll use the standard form of a circle's equation: [tex]\((x-h)^2 + (y-k)^2 = r^2\)[/tex].

Here's the step-by-step process:

1. Identify the center of the circle [tex]$(h, k)$[/tex] and the radius [tex]\(r\)[/tex]:
- The center of the circle is given as [tex]\((3, 2)\)[/tex].
- The radius of the circle is given as [tex]\(5\)[/tex].

2. Substitute the given values into the standard form equation [tex]\((x-h)^2 + (y-k)^2 = r^2\)[/tex]:
- Here, [tex]\(h = 3\)[/tex], [tex]\(k = 2\)[/tex], and [tex]\(r = 5\)[/tex].

3. Substitute [tex]\(h\)[/tex], [tex]\(k\)[/tex], and [tex]\(r\)[/tex] into the equation:
- Replace [tex]\(h\)[/tex] with [tex]\(3\)[/tex], [tex]\(k\)[/tex] with [tex]\(2\)[/tex], and [tex]\(r\)[/tex] with [tex]\(5\)[/tex]:
[tex]\[ (x-3)^2 + (y-2)^2 = 5^2 \][/tex]

4. Simplify the equation:
- Calculate the square of the radius [tex]\(5\)[/tex]:
[tex]\[ 5^2 = 25 \][/tex]
- So, the equation becomes:
[tex]\[ (x-3)^2 + (y-2)^2 = 25 \][/tex]

The equation of the circle with center [tex]\((3, 2)\)[/tex] and radius [tex]\(5\)[/tex] is [tex]\((x-3)^2 + (y-2)^2 = 25\)[/tex].

Therefore, the correct answer is:

A. [tex]\((x-3)^2 + (y-2)^2 = 25\)[/tex]