करके देखें:
1. बहुपदों [tex]$2x-7$[/tex] और [tex]$5x+9$[/tex] को जोड़िए।
2. बहुपद [tex]$3x^2+2x-3$[/tex] में से [tex]$x^2+3x-4$[/tex] को घटाइए।
3. बहुपदों [tex]$x^2+2x-3$[/tex] और [tex]$x^2+x-2$[/tex] को गुणा कीजिए।

क्या बहुपदों का भाग भी कर सकते हैं?
ध्यान दें कि जोड़ने और घटाने में एक समान घात वाले पदों को ही जोड़ा या घटाया जा सकता है।



Answer :

बिलकुल, आइए हम विभिन्न बहुपदों को जोड़ने, घटाने और गुणा करने की प्रक्रिया को विस्तार से समझें।

### 1. बहुपदों को जोड़ना - [tex]$2x - 7$[/tex] और [tex]$5x + 9$[/tex]

दोनों बहुपदों के समान धाराओं को जोड़ते हैं:

[tex]\[ (2x - 7) + (5x + 9) \][/tex]

समान धाराएं जोडकर हमें मिलता है:
[tex]\[ (2x + 5x) + (-7 + 9) = 7x + 2 \][/tex]

अतः, जोड़ने से प्राप्त उत्तर होगा:
[tex]\[ 7x + 2 \][/tex]

### 2. बहुपदों में से घटाना - [tex]$3x^2 + 2x - 3$[/tex] में से [tex]$x^2 + 3x - 4$[/tex]

दोनों बहुपदों की समान धाराओं को घटाते हैं:

[tex]\[ (3x^2 + 2x - 3) - (x^2 + 3x - 4) \][/tex]

समान धाराएं घटाकर हमें मिलता है:
[tex]\[ (3x^2 - x^2) + (2x - 3x) + (-3 - (-4)) \][/tex]

जिससे हम पाते हैं:
[tex]\[ 2x^2 - x + 1 \][/tex]

अतः, घटाने से प्राप्त उत्तर होगा:
[tex]\[ 2x^2 - x + 1 \][/tex]

### 3. बहुपदों को गुणा करना - [tex]$x^2 + 2x - 3$[/tex] और [tex]$x^2 + x - 2$[/tex]

इन दोनों बहुपदों को गुणा करने के लिए उनके प्रत्येक गुणकों का गुणनफल निकालते हैं:

[tex]\[ (x^2 + 2x - 3) \cdot (x^2 + x - 2) \][/tex]

पहला बहुपद प्रत्येक गुणकों के साथ गुणा करेंगे:

[tex]\[ (x^2 + 2x - 3) \cdot x^2 = x^4 + 2x^3 - 3x^2 \][/tex]
[tex]\[ (x^2 + 2x - 3) \cdot x = x^3 + 2x^2 - 3x \][/tex]
[tex]\[ (x^2 + 2x - 3) \cdot (-2) = -2x^2 - 4x + 6 \][/tex]

अब इन सभी परिणामों को जोड़ते हैं:
[tex]\[ x^4 + (2x^3 + x^3) + (-3x^2 + 2x^2 - 2x^2) + (-3x - 4x) + 6 \][/tex]
[tex]\[ = x^4 + 3x^3 - 3x^2 - 7x + 6 \][/tex]

अतः, गुणा करते समय बहुपदों का जो उत्तर हमें मिलता है:
[tex]\[ x^4 + 3x^3 - 3x^2 - 7x + 6 \][/tex]

### बहुपदों के विभाजन:

हम विभाजन भी कर सकते हैं, परन्तु यह प्रक्रिया थोड़ी जटिल होती है और यहां उसका विस्तृत विवरण देना संभव नहीं है। बस इतना कह सकते हैं कि विभाजन के परिणाम स्वरूप कुछ और बहुपद प्राप्त होते हैं जिसे गुणनफल से पूर्ण भाग देने वाले केवल और बाकी को शेष रूप में लिखा जा सकता है।

आशा है कि अब आपको बहुपदों को जोड़ने, घटाने और गुणा करने में आसानी होगी!