The equation [tex]$x^2 - x - 90 = 0$[/tex] has solutions [tex][tex]$\{a, b\}$[/tex][/tex]. What is [tex]$a + b$[/tex]?

A. -19
B. -9
C. 1
D. 10



Answer :

To solve the quadratic equation [tex]\(x^2 - x - 90 = 0\)[/tex], we need to use the quadratic formula, which is given by:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

In this specific equation, the coefficients are:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = -1 \)[/tex]
- [tex]\( c = -90 \)[/tex]

First, we calculate the discriminant, [tex]\(\Delta\)[/tex], as follows:

[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-1)^2 - 4 \cdot 1 \cdot (-90) \][/tex]
[tex]\[ \Delta = 1 + 360 \][/tex]
[tex]\[ \Delta = 361 \][/tex]

Since the discriminant is positive, we will have two distinct real roots. We can find the solutions [tex]\(x_1\)[/tex] and [tex]\(x_2\)[/tex] by plugging the values into the quadratic formula:

[tex]\[ x_1 = \frac{-(-1) + \sqrt{361}}{2 \cdot 1} \][/tex]
[tex]\[ x_1 = \frac{1 + 19}{2} \][/tex]
[tex]\[ x_1 = \frac{20}{2} \][/tex]
[tex]\[ x_1 = 10 \][/tex]

[tex]\[ x_2 = \frac{-(-1) - \sqrt{361}}{2 \cdot 1} \][/tex]
[tex]\[ x_2 = \frac{1 - 19}{2} \][/tex]
[tex]\[ x_2 = \frac{-18}{2} \][/tex]
[tex]\[ x_2 = -9 \][/tex]

Thus, the solutions to the equation [tex]\(x^2 - x - 90 = 0\)[/tex] are [tex]\(x_1 = 10\)[/tex] and [tex]\(x_2 = -9\)[/tex].

Finally, to find [tex]\(a + b\)[/tex], we add the solutions together:

[tex]\[ a + b = 10 + (-9) \][/tex]
[tex]\[ a + b = 1 \][/tex]

Therefore, the sum [tex]\(a + b\)[/tex] is:

[tex]\[ \boxed{1} \][/tex]