Complete the table for the equation [tex]$x - y = -7$[/tex], and graph the equation.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
0 & 7 \\
\hline
-7 & 0 \\
\hline
2 & 9 \\
\hline
1 & [tex]$\square$[/tex] \\
\hline
\end{tabular}

(Note: To complete the table, solve for [tex]y[/tex] when [tex]x = 1[/tex].)



Answer :

Let's solve for [tex]\( y \)[/tex] in the given equation [tex]\( x - y = -7 \)[/tex].

First, we rearrange the equation to solve for [tex]\( y \)[/tex]:
[tex]\[ x - y = -7 \][/tex]
[tex]\[ y = x + 7 \][/tex]

Now, we will complete the table by calculating the value of [tex]\( y \)[/tex] for each given [tex]\( x \)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & y = 0 + 7 = 7 \\ \hline -7 & y = -7 + 7 = 0 \\ \hline 2 & y = 2 + 7 = 9 \\ \hline 1 & y = 1 + 7 = 8 \\ \hline \end{array} \][/tex]

So, the completed table looks like this:
[tex]\[ \begin{tabular}{|c|c|} \hline x & y \\ \hline 0 & 7 \\ \hline -7 & 0 \\ \hline 2 & 9 \\ \hline 1 & 8 \\ \hline \end{tabular} \][/tex]

Next, let’s graph the equation [tex]\( x - y = -7 \)[/tex] or equivalently [tex]\( y = x + 7 \)[/tex] using the points from the table:
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 7 \)[/tex]
- When [tex]\( x = -7 \)[/tex], [tex]\( y = 0 \)[/tex]
- When [tex]\( x = 2 \)[/tex], [tex]\( y = 9 \)[/tex]
- When [tex]\( x = 1 \)[/tex], [tex]\( y = 8 \)[/tex]

Plot these points on the coordinate plane and draw a straight line through them to graph the equation [tex]\( y = x + 7 \)[/tex]. The line will pass through the points (0,7), (-7,0), (2,9), and (1,8).