Answer :
Let's evaluate the given mathematical expression:
[tex]\[ \sin A + \sin B + \sin C = 4 \sin \frac{A+B}{2} \sin \frac{B+C}{2} \sin \frac{C A+C}{2} \][/tex]
We need to prove if the expression on the left-hand side equals the expression on the right-hand side.
1. Step 1: Understand the Given Expression
We are given three angles [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex]. From the context, it's likely that these angles are the internal angles of a triangle. Hence, we know that:
[tex]\[ A + B + C = 180^\circ \quad \text{(or} \; \pi \; \text{radians)} \][/tex]
2. Step 2: Simplify the Angles
Let's assume an equilateral triangle for simplicity, where:
[tex]\[ A = B = C = 60^\circ \quad \text{(or} \; \frac{\pi}{3} \; \text{radians)} \][/tex]
3. Step 3: Calculate the Left Side
Now let's calculate the left side of the equation:
[tex]\[ \sin A + \sin B + \sin C \][/tex]
With [tex]\( A = B = C = 60^\circ \)[/tex], we get:
[tex]\[ \sin 60^\circ + \sin 60^\circ + \sin 60^\circ \][/tex]
[tex]\[ 3 \cdot \sin 60^\circ \][/tex]
And we know that:
[tex]\[ \sin 60^\circ = \frac{\sqrt{3}}{2} \][/tex]
So the calculation becomes:
[tex]\[ 3 \cdot \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2} \approx 2.598076211353316 \][/tex]
4. Step 4: Calculate the Right Side
Now we'll calculate the right-hand side of the equation:
[tex]\[ 4 \sin \frac{A+B}{2} \sin \frac{B+C}{2} \sin \frac{C A+C}{2} \][/tex]
For our equilateral triangle:
[tex]\[ \frac{A+B}{2} = \frac{60^\circ + 60^\circ}{2} = 60^\circ \][/tex]
and similarly:
[tex]\[ \frac{B+C}{2} = 60^\circ \][/tex]
and:
[tex]\[ \frac{C A+C}{2} = 60^\circ \][/tex]
Therefore:
[tex]\[ 4 \sin 60^\circ \sin 60^\circ \sin 60^\circ \][/tex]
Plugging in:
[tex]\[ 4 \cdot \left( \frac{\sqrt{3}}{2} \right) \cdot \left( \frac{\sqrt{3}}{2} \right) \cdot \left( \frac{\sqrt{3}}{2} \right) \][/tex]
[tex]\[ 4 \cdot \left( \frac{\sqrt{3}}{2} \right)^3 \][/tex]
[tex]\[ 4 \cdot \left( \frac{3\sqrt{3}}{8} \right) \][/tex]
[tex]\[ = \frac{3\sqrt{3}}{2} \approx 2.5980762113533156 \][/tex]
5. Conclusion
Both the left-hand side and right-hand side of the equation approximately equal [tex]\( \frac{3\sqrt{3}}{2} \approx 2.598076211353316 \)[/tex]. Thus, the expression holds true for the given angles of an equilateral triangle.
Therefore,
[tex]\[ \sin A + \sin B + \sin C = 4 \sin \frac{A+B}{2} \sin \frac{B+C}{2} \sin \frac{C A+C}{2} \][/tex]
is indeed verified.
[tex]\[ \sin A + \sin B + \sin C = 4 \sin \frac{A+B}{2} \sin \frac{B+C}{2} \sin \frac{C A+C}{2} \][/tex]
We need to prove if the expression on the left-hand side equals the expression on the right-hand side.
1. Step 1: Understand the Given Expression
We are given three angles [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex]. From the context, it's likely that these angles are the internal angles of a triangle. Hence, we know that:
[tex]\[ A + B + C = 180^\circ \quad \text{(or} \; \pi \; \text{radians)} \][/tex]
2. Step 2: Simplify the Angles
Let's assume an equilateral triangle for simplicity, where:
[tex]\[ A = B = C = 60^\circ \quad \text{(or} \; \frac{\pi}{3} \; \text{radians)} \][/tex]
3. Step 3: Calculate the Left Side
Now let's calculate the left side of the equation:
[tex]\[ \sin A + \sin B + \sin C \][/tex]
With [tex]\( A = B = C = 60^\circ \)[/tex], we get:
[tex]\[ \sin 60^\circ + \sin 60^\circ + \sin 60^\circ \][/tex]
[tex]\[ 3 \cdot \sin 60^\circ \][/tex]
And we know that:
[tex]\[ \sin 60^\circ = \frac{\sqrt{3}}{2} \][/tex]
So the calculation becomes:
[tex]\[ 3 \cdot \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2} \approx 2.598076211353316 \][/tex]
4. Step 4: Calculate the Right Side
Now we'll calculate the right-hand side of the equation:
[tex]\[ 4 \sin \frac{A+B}{2} \sin \frac{B+C}{2} \sin \frac{C A+C}{2} \][/tex]
For our equilateral triangle:
[tex]\[ \frac{A+B}{2} = \frac{60^\circ + 60^\circ}{2} = 60^\circ \][/tex]
and similarly:
[tex]\[ \frac{B+C}{2} = 60^\circ \][/tex]
and:
[tex]\[ \frac{C A+C}{2} = 60^\circ \][/tex]
Therefore:
[tex]\[ 4 \sin 60^\circ \sin 60^\circ \sin 60^\circ \][/tex]
Plugging in:
[tex]\[ 4 \cdot \left( \frac{\sqrt{3}}{2} \right) \cdot \left( \frac{\sqrt{3}}{2} \right) \cdot \left( \frac{\sqrt{3}}{2} \right) \][/tex]
[tex]\[ 4 \cdot \left( \frac{\sqrt{3}}{2} \right)^3 \][/tex]
[tex]\[ 4 \cdot \left( \frac{3\sqrt{3}}{8} \right) \][/tex]
[tex]\[ = \frac{3\sqrt{3}}{2} \approx 2.5980762113533156 \][/tex]
5. Conclusion
Both the left-hand side and right-hand side of the equation approximately equal [tex]\( \frac{3\sqrt{3}}{2} \approx 2.598076211353316 \)[/tex]. Thus, the expression holds true for the given angles of an equilateral triangle.
Therefore,
[tex]\[ \sin A + \sin B + \sin C = 4 \sin \frac{A+B}{2} \sin \frac{B+C}{2} \sin \frac{C A+C}{2} \][/tex]
is indeed verified.