If [tex]f(x) = \sqrt{x-3}[/tex], which inequality can be used to find the domain of [tex]f(x)[/tex]?

A. [tex]\sqrt{x-3} \geq 0[/tex]
B. [tex]x-3 \geq 0[/tex]
C. [tex]\sqrt{x-3} \leq 0[/tex]
D. [tex]x-3 \leq 0[/tex]



Answer :

To determine the domain of the function [tex]\( f(x) = \sqrt{x-3} \)[/tex], let's analyze the conditions under which the expression inside the square root is valid.

We know that the square root function is only defined for non-negative values. Therefore, the expression inside the square root, namely [tex]\( x - 3 \)[/tex], must be non-negative.

1. Identify the requirement for the square root:

[tex]\[ x - 3 \geq 0 \][/tex]

2. Solve the inequality:

To solve the inequality [tex]\( x - 3 \geq 0 \)[/tex]:

[tex]\[ x \geq 3 \][/tex]

This inequality represents the domain of the function [tex]\( f(x) = \sqrt{x-3} \)[/tex].

Hence, the correct inequality from the given options that can be used to find the domain of [tex]\( f(x) \)[/tex] is:

[tex]\[ x - 3 \geq 0 \][/tex]

Which corresponds to the second choice in the given list.

[tex]\[ \boxed{x-3 \geq 0} \][/tex]