Complete the table for the equation [tex]2x - 5y = 10[/tex], and graph the equation.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
0 & [tex]$\square$[/tex] \\
\hline
\end{tabular}



Answer :

To complete the table and graph the equation [tex]\(2x - 5y = 10\)[/tex], we first need to find the value of [tex]\(y\)[/tex] when [tex]\(x = 0\)[/tex].

1. Substitute [tex]\(x = 0\)[/tex] into the equation [tex]\(2x - 5y = 10\)[/tex]:
[tex]\[ 2(0) - 5y = 10 \][/tex]
Simplifies to:
[tex]\[ -5y = 10 \][/tex]
To solve for [tex]\(y\)[/tex], divide both sides by [tex]\(-5\)[/tex]:
[tex]\[ y = \frac{10}{-5} \][/tex]
Simplifying this fraction, we get:
[tex]\[ y = -2 \][/tex]

So, when [tex]\(x = 0\)[/tex], [tex]\(y = -2\)[/tex].

Therefore, the completed table is:
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
0 & -2 \\
\hline
\end{tabular}

To graph the equation [tex]\(2x - 5y = 10\)[/tex], follow these steps:

1. Find two points on the line: One point is already identified from the table, which is [tex]\((0, -2)\)[/tex]. We can find another point by choosing another value for [tex]\(x\)[/tex] and solving for [tex]\(y\)[/tex].

Let's find [tex]\(y\)[/tex] when [tex]\(x = 5\)[/tex]:
[tex]\[ 2(5) - 5y = 10 \][/tex]
Simplifies to:
[tex]\[ 10 - 5y = 10 \][/tex]
Subtract 10 from both sides:
[tex]\[ -5y = 0 \][/tex]
Divide by [tex]\(-5\)[/tex]:
[tex]\[ y = 0 \][/tex]
So, another point is [tex]\((5, 0)\)[/tex].

2. Plot these points on the coordinate plane:
- Plot the point [tex]\((0, -2)\)[/tex].
- Plot the point [tex]\((5, 0)\)[/tex].

3. Draw the line: Connect these two points with a straight line, extending it in both directions.

By doing this, you'll have the graph of the equation [tex]\(2x - 5y = 10\)[/tex]. The line will cross the vertical axis (y-axis) at [tex]\((0, -2)\)[/tex] and the horizontal axis (x-axis) at [tex]\((5, 0)\)[/tex]. This line represents all the solutions to the equation [tex]\(2x - 5y = 10\)[/tex].